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8. INTRODUCTION

This report is a continuation of Part I [6] where we have presented an implementation of

the look-ahead Lanczos algorithm for general non-Hermitian matrices A.

The purpose of the present paper is twofold. First, we show how the look-ahead Lanc-

zos process -- combined with a quasi-minimal residual (QMR hereafter) approach -- can

be used to solve large sparse non-Hermitian linear systems Ax = b. An implementation of

the resulting QMR method is discussed in detail. The QMR approach was first proposed for

the special case of complex symmetric matrices in [5]; for further properties of the method

for general non-Hermitian matrices, we refer the reader to [7]. Second, we report numerical

experiments with our implementation of the look-ahead Lanczos algorithm, both for eigen-

value problems and linear systems. Also, program listings of FORTRAN implementations

of the look-ahead Lanezos algorithm and the QMR method are included.

Note that we continue the numbering of Part I [6] of this paper. Hence, the numbers

1, 2,..., 7 refer to sections in Part I.

The outline of Part II is as follows. In Section 9, we describe the basic idea of the

QMR approach. In Section 10, details of an actual implementation of the QMR algorithm

are given. In Section 11, we discuss some of the properties of the QMR method. It is

shown, for example, how iterates of the biconjugate gradient algorithm (BCG hereafter)

can be obtained -- when they exist -- from the QMR algorithm. In Section 12, we briefly

discuss how to incorporate preconditioning into the QMR method and describe two precon-

ditioners which we have used for our numerical tests. In Section 13, numerical examples

are presented. In Section 14, we make some concluding remarks. Finally, FORTRAN

programs are listed in an Appendix.

Throughout this paper, A denotes a complex, in general non-Hermitian, N x N matrix.

For given non-zero starting vectors, vl E C/v and wl E C N, we denote by _, and H,,

n = 1, 2,... the vectors (normalized to have unit length) generated by the look-ahead

Lanczos method described in Part I [6]. Generally, we use the same notation as introduced

in Sections 2 and 3. Hence

,_2 ... ,_.1=[¢, _ ... '2_] (8.1)

and

Here k - k(n) isthe number of the block containing the vector _.. Recall (cf.

(2.19))that the Lanezos vectors span the Krylov subspaces

A) := span{ , , Avl,..., A"-lvl},

K,(wl,A T) := span{wl,ATwl,..., (AT) n-I w_t},

$._.,

I, c-},

(2.1) and

(s.2)

(s.3)



By (2.20),leftand rightLanczos vectors corresponding to differentblocks axe biorthogonal,

i.(_.,

14rf_ = O, j _ I. (8.4)

Furthermore, in view of (3.7),

W_ is nonsingular for complete blocks I. (8.5)

Finally,we willmake use of the fzrstrelation in (3.3):

A_(") = _'(")_(") + [o o p.+,,).+x] (8.6)

Here, by (3.5) and (3.6),

t_(") :=

"6] _ 0 -.- 0

Iw ° Is.% &2

0 ". "'. "'. 0

0 ... 0 % &,

(8.7)

is a n x n block tridiagonal matrix with diagonal and sub-diagonal blocks of the form

sis

* •

Pnl+l

0 p,.+_

: s. e

s•.

. °

0 Phi+t-]

I[[I I

}

"0 ...... 0 P-I

: "'. 0

• • :

• ... •

0 ......... 0

(8.8)

Moreover, we have set

8jp#:=_ >0, j=2,3, .... (8.9)
sj__

Note that _r(-) and allthe blocks &z axe upper Hessenberg matrices with positive subdi-

agonal dements.
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9. THE QUASI-MINIMAL RESIDUAL ALGORITHM

We are interested in using the look-ahead Lanczos algorithm to solve linear systems

Ax = b. (9.1)

Here, b E C N is some given fight-hand side. Furthermore, it is always assumed that A is

nonsingular.

Given any initial guess z0 e C N for the exact solution A -1 b of (9.1), we will construct

iterates x,, n = 1, 2,..., such that

x, • xo + K.(ro, A). (9.2)

In the sequel, r, = b- Ax. will denote the residual vector corresponding to the nth iterate

x.. We choose the initial residual vl = r0 as one of the two starting vectors for the look-

ahead Lanczos algorithm. Then, in view of (8.2), the right Lanczos vectors ill, fi2,...,,3,

span K.(r0,A), and hence we have the parametrization

x.=xo+V(")z, z•C", (9.3)

for all possible iterates (9.2). Note that the second starting vector, wl • C N, is still

unspecified. Due to the lack of a criterion for the choice of wl, one usually sets wa = r0 in

practice.

Next, letting

[ T [0
_") :- Lp.+,erj, e. :-- ..-

wecan rewrite (8.6) as

A_l_(. ) = _-(.+1)/_(.).

By (9.5), the residual vectors corresponding to (9.3) satisfy

0 1], (9.4)

(9.5)

where

y") = [p_ o ... o]T • W'+' with p, = I1,'o11.

We introduce an (n + 1) × (n + 1) diagonal matrix 12(") = diag(a:l,_a2,... ,w.+l), ¢ai > O,

to serve as a free parameter that can be used to modify the sealing of the problem. In

our numerical experiments, the simplest sealing f/(*) = I,+1 gave satisfactory results.
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However, better strategies for choosing G(") might be possible, and therefore we have

formulated the QMR approach with a general scaling matrix G("). With it, (9.6) reads

(9.7)

where fl(") -- Wl_ (").

Ideally, we would like to choose z E C" in (9.3) such that ]lr, II is minimal. However,

since in general V("+]) is not unitary, this would require O(Nn 2) work, which is too

expensive. We will instead minimize just the Euclidean norm of the bracketed terms, i.e.,

we will choose z = z (") E C" as the solution of the least squares problem

IJ. = IJ.
zEC"

(9.8)

Note that, by (8.7-9) and (9.4), /_(") and f_(")/t_") are (n + 1) × n matrices with fun

column rank n. This guarantees that the solution z(") of (9.8) is unique. Hence, (9.8)

together with (9.3) define a unique nth iterate xn. In view of the minimization property

(9.8), we refer to rids iteration scheme as the qu_i-miniraal residual (QMR) method.

For the solution of the least squares problem (9.8), we use the standard approach (see,

e.g., [8, Chapter 6]) based on a QR decomposition of ft(")H_("):

(Q'"') [0.0j (9.9)

Here, Q(n) is a unitary (n + 1) × (n + 1) matrix, and R ('0 is a nonsingular upper triangular

n x n matrix. Inserting (9.9) in (9.8) yields

z E C" z E C" [0..-0

R(") ]= Ilo<-','+'-zEC"

(9.ao)
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Hence,z (") is given by

_(°_(_)-_()= t(") ,
l:n

where t(. ) = = Q(n)_(,O.
Tn

"rn+l

Furthermore, we have

(9.11)

(9.12)
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10. IMPLEMENTATION DETAILS

In this section, we describe in detail the actual implementation of the QMR algorithm.

We break the discussion in two logical blocks: first, updating the QR decomposition of

_(,)_!n), and second, updating the QMR iterates z,. Many of the details of updating

the QR decomposition of _(")/tt (") can also be found elsewhere (see, e.g., [8, Chapter 12]);

they are included here for completeness. Furthermore, we remark that the approach for

updating the iterates z, is based on a technique which was first used by Paige and Saun-

ders [11] in connection with their SYMMLQ and MINRES algorithms for real symmetric

matrices.

The QR decomposition (9.9) of _(")_..e ('_} is computed by means of Givens rotations,

taking advantage of the fact that l'_(,OO.,(r,) is an upper Hessenberg matrix. We use Givens

rotations of the form

I.-i 0 0
2

Gn-- 0 Cn an , with chert, aneC, Cn+lSnl2=l. (10.1)

0 - s"_ c.

Let

be a given vector. Then, by choosing

]al _ b
Cn "-- , On -- Cn --, if a#O,

(10.2)

c, = 0, s-'_ = 1, if a = 0,

in (10.1), we obtain a Givens rotation G, which zeroes out the last element of h

[i[i]
Here 'x' denotes elements that are left unchanged by the rotation. Clearly, G. is unitary;

furthermore, products of Givens rotations are also unitary. In particular,

oI._,] (10.3)
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is tmit_T. In general, then, the QR decomposition of f/(,)/_(n) can be computed as follows.

After the nth column of He(") is built, one first premultiplies it by I2("), and then by all

the previous Givens rotations, thus computing

]o z._,j \ e / :,n-t-1 "

One then computes G, from (10.2) with a = h,,, b -- h,+l (= o_,,+1p,+i), and finally

obtains the nth column of R (') by applying G, to h. For later use, we notice that

which is readily verified by means of (10.2).

In our case, _(")He (") is also block tridiagonal, which means that not all the previous

Givens rotations have to be applied. Let na denote the index of the first Givens rotation

that has to be applied. Then

max (n__, - 1,1)no = max (nk-= 1,1)

Finally, note that if no > 1, then applying G,_

non-zero element in the na position.

if _3. is an inner vector,

if 13. is a regular vector.

to (f/(")/t,(")_ will introduce a
\ / :,n+l

Once the QR decomposition is updated, one updates the vector t(") in (9.11) by setting

(10._)

Clearly, by (10.1), t (n) differs from t ('-1) only in its last two entries which are given by

r. = c._. and "_,,+:t = -_". _.. (10.6)

Next, we show that this newly introduced element _,+1 can be used to obtain an

upper bound for the norm of the residual r,. First, note that, in view of (9.7),

(10.7)
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Now

I1 ,o+1,11< +1,
since Q(,+I) has n + 1 columns of Euclidean norm 1, and

(10.8)

= max i = 1,...,- + 1, (10.9)
i

as fl(") is diagonal. Combining (10.7-9) and (9.12), we get

I1,.11-<_ I_.+alm_x _ . (10.10)

Let us now turn to updating the iterates z.. We will update _. only when the current

block k is closed, i.e., when

n = nt+l - 1. (10.11)

This means that the QR decomposition of f_(,,)_(,0 has been updated as described above,

and that (t("))l:, will hereafter remain unchanged. Inserting (9.11) in (9.3) yields

l:n
(10.12)

k /l:n

where we have introduced the matrix of direction vectors

=_(")(R("))-_= [P_ P_ ... _.1.p(-) (10.13)

Here the partitioningof p(.) intosubmatrices on the right-hand sideof (10.13)issin_lar to

(8.1): the matrices Pi contain the direction vectors corresponding to block I, I = 1, 2,..., k.

Then, with (10.11-13), we arrive at the update formula

1. (10.14)
,g / n#/:1'1

It remains to show how to compute Ph. To this end, we first note that

0 ..- O"
• !

R(,h-1) 0 --" 0

Zt

V(") = P(")R (") = P(") Yt '

j•. llJ 0

0 ...... 0

Rk

(lO.15)
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where Zk is a 1 x hk block, Yk is a h_-i x h_ block, and Rk is a hk x hk block. Recall that

hk-a = nk - nk-1 and hk = nk+l - nk denote the sizes of blocks k - 1 and k, respectively.

The block structure of R (") in (10.15) is a consequence of the block structure (8.7) of/_(,0

and of the fact that the fill-in from the QR decomposition of f_(")/_e ('_) is limited to the

row above each block/3t, 1 = 2, 3,..., k.

To save work, we compute and store the vectors PkRk, as opposed to computing and

storing P_. Rewriting (10.15) in terms of the stored vectors, we obtain the update formula

Moreover, instead of (10.14), we actually use the update formula

Finally, a note about computing the middle term in (10.16). If one computes in order from

left to right, i.e.,

((p,_2R,_2)(R,_,)-I) [O ... 0]Zk

then the work involved is O(Nhk-2 + Nhk). If one computes in order from right to left,

i.e.,

0 .. O]

then the work involved is O(hkhk-2 + Nhkhk-2). This means that if hk = 1 or hk-2 = 1,

it is cheaper to multiply from right to left; otherwise, it is cheaper to multiply from left

to right. In both cases, one takes advantage of the fact that Zk is a row vector, which

means that only the lastcolumn of the matrix premultiplying Z_ has to be computed. In

particular,only the lastcolumn of (Rk_2) -a isneeded and has to be stored.
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11. FURTHER PROPERTIES OF THE QMR ALGORITHM

In this section, we derive an update formula for the QMR residual vectors. Moreover, it

is shown that BCG iterates can be easily recovered from the QMR process.

In the QMR algorithm described in the last section, neither the residual vectors r'`

nor their norms Ilr'`llare generated explicitly. Instead, the upper bound (10.10) for II,'`ll
is available. In our implementation, we monitor this upper bound and switch over to com-

puting the true residual vector and its norm only in the last few iteration steps. Another

possibility would be to update the residual vector in each step. The following proposition

shows that this can be done at the cost of one additional SAXPY per step.

Proposition 1. For n = 1,2,... :

Cn_'`+l
r'` --ls'`lZr'`_l + 0.+i.

0_'`-I- 1
(II.I)

Proof. By inserting z = z(") from (9.11) in (9.7) and using (9.9), we obtain

= O(") . (11.2)

Now note that, by (10.3) and (10.1),

O[ooo][ "-- • 0 0 (11.3)

0 "'" 0 -.. 0 c'` -s,,
• .- 0 a-'g" c.

By means of (11.3), one readily verifies that two successive vectors I/,,+1 and Y, in (11.2)

are connected by

y.+l -----s-Y- + c. 0.+1. (11.4)
_n+l

Finally, by inserting (11.4) in (11.2) and using the second relation in (10.6), we obtain

(11.1).D
Next we turn to the BCG method [9] and show its connection with the QMR algorithm.

In order to distinguish quantities from the two approaches, superscripts _ and QM'R

will be used. In the sequel, it is always assumed that BCG and QMR are started with the

same initial guess zo.
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In the BCG approach, one aims at computing iterates zn_:x; which are characterized

by the Galerkin type condition

wT(b - Ax, Box;) = 0 for all w E gn(wl,AT), x_lzx; G xo + Kn(ro,A). (11.5)

(see, e.g., [13]). Unfortunately, such an iterate need not exist for every n. This is one of

the two sources for possible breakdowns which can occur in the classical BCG algorithm.

Next, we rewrite the condition (11.5) in terms of quantities generated by the look-

ahead Lanczos algorithm. For this purpose, the same parametrization as in (9.3) is used:

z_axl = x0 + 17(")u("), u(") E C".

Then, in view of (8.6), the corresponding residual vector satisfies

,sc_ = b- A_,_ = ,0 - Ag("),,(")

where _(")= [pl 0 ... 0]r e a", pl = II'011-

Next, inserting (11.6) in (11.5) and using (8.3), we can rewrite (11.5) as follow:

(11.6)

(11.7)

(11.8)

(11.9)

By means of (11.9), we can now derive a simple criterion for the existence of the nth

BCG iterate. In the following proposition, ej and ,j, j = 1,... ,n, denote the dements of

the jth Givens rotation used in our implementation of the QMR method, as described in

Section 10. Moreover, p,, is the last column of the matrix P(") introduced in (10.13).

11

(l_V"('0) TITr(") is nonsingular and (_(,0) 5,,+1 = 0,

respectively. Finally, with (11.8), the equation (11.7) reduces to

_('Ou('O : 7(").

:sc_ = xo+ 9('%(").

In analogy to the QMR algorithm, we will attempt to recover the BCG iterate only

when the current block k is closed. Thus, in the sequel, it is always assumed that n =

nk+l - 1, (d. (10.11). This guarantees that, by (8.5) and (8.4),



Proposit|on 2. let n = nk+l - 1, k = O, 1, .... Tfien tile [ollowin$ are equivaJent:

(i) tileBCG iteratez.sou de_ned by (11.5)exists;

(fi) [-I(") is nonsingulaz;

(.i) c. # O.
Moreover, if _ exists, then

r.BeG =--P.+l (u(n)) V.+l,
n

bJ 1

_dn+lC" '

(11.11)

(11.12)

Proof. Clearly, an nth BCG iterate exists if, and only if, the linear system (11.9) has a

solution. Recall that, by (11.6), _/(") is a nonzero multiple of the first unit vector, and

that/_(") is an upper Hessenberg matrix whose subdiagonal elements are all nonzero (by

(8.9)). Hence, the extended coefficient matrix [-r(") H(")] of (11.9) has full row rank n.

Consequently, (11.9) has a solution if, and only if, H(") is nonsingular. This shows the

equivalence of (i) and (ii).

Next, using (9.9), (9.4), (10.1), and (10.3), one readily verifies that

Q("-')a("-')h(")=[z"o -' c.°]R(")

This relation implies that (ii) and (iii) are equivalent.

Now assume c, _ 0. With (11.9) and (11.13), it follows that

x.ecv = z0+ _?(")u("),
(11.14)' ['-0,

Recalling the definitions of 7 (") and fl(") in (11.6) and (9.6), respectively, and using (9.11),

we can rewrite (11.14) as follows:

(11.15)÷.lc. "

By comping (11.15).ith 00.12), weobtain the relation

('- )
12



which, in view of (10.6), is just (il.lO). Equation (11.11) follows by inserting (11.9) in

(11.6).
Finally, from (11.11) and (11.15), we deduce that

I ()c, _ where _,-" R(") ,,, (11.16)

Note that, in view of (10.4),

Pn+l --

Moreover, by (10.6) and since "_1= wl Ilroll,

Is,,_',,I (11.17)

I_.1= ,,.,1II,'oll"Is,s=.-.s.-11. (11.18)

By inserting (11.17) and (11.18) in (11.16), we get (11.12), and this concludes the proof. E]
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12. PRECONDITIONING

As for other conjugate gradient type methods, for solving realistic problems, it is crucial to

combine the QMR algorithm with an efficient preconditioning technique. In this section,

we show how to incorporate preconditioners into the QMR code. Also, we briefly describe

two preconditioning techniques.

Let us first treat the problem in some generality. Suppose that we replace the original

linear system (9.1), Ax -- b, by an equivalent linear system

2_ = _,, (12.1)

where ft., y, and b are defined suitably to guarantee the equivalence between the two

systems. Typically,

A-'fA(A), V = h(x), b = h(b)

for some functions fa, fz, and lb. The goal in replacing (9.1) with (12.1) is to replace

a "hard" system by an "easier" system. In particular, one attempts to ensure that the

system (12.1) is easier to solve than (9.1), which translates into having a matrix .4 which is

more suitable for some solver that A is, and having a function fz which is easily invertible.

The QMR algorithm for the new system (12.1) is then as follows:

Given an initial guess z0 and a nonzero vector wx, set

_o= f,(_o),

p, ---I1_oII,
1.

t31 ---- _ro.
Pl

Iterate with .4 to compute'

2T_(") = _("+')_(").

When appropriate, compute the iterates

P. = Yo + l?(")z.

where, given

/r 1 11)
14



zn is chosen to minimize

When appropriate, compute the iterates

• .

Note that the term being minimized is part of rn; one could attempt to correlate this

with rn.

One approach in preconditioning is the following. Given a preconditioner matrix M,

with M _ A in some sense, one uses a decomposition of M into

M=M1M2

to precondition the original system Ax = b, by setting

fi = M_IAMf 1, y = M2(x - xo), b = M[ "1(b - Axo). (12.2)

Clearly, with (12.2), (12.1) is equivalent to the original system (9.1)• Furthermore, given

iterates yn generated for (12.1), one can recover art, and rn for (9.1) through

x. = x0 + M_'Iy., r. = MI_.,

with y0 = 0 and _0 = M_lr0. By setting M1 = I or M2 = I, one obtains right or left

preconditioning, respectively, in which cases the above formulas simplify somewhat. In

general, however, for the QMR algorithm applied to a preconditioned system, one has to

be able to compute M_'lz, M_'Tz, M_'lz, and M_'Tz, for arbitrary vectors z.

Two examples of preconditioners that fall in the category described above are the

SSOR and the ILUT preconditioners. We briefly discuss them and our particular imple-

mentations.

• SSOR

The SSOR preconditioner is based on a decomposition of the matrix A into a non-

singular diagonal matrix D, a strictly lower triangular matrix L, and a strictly upper

triangular matrix U, such that
A'--D+L+U.

Note that D might have to be block diagonal to ensure it is nonsingular. For this precon-

ditioner, one sets M1 = I or M2 = I, depending on whether right or left preconditioning

is desired. The preeonditioner matrix M is given by

MssoR = (D + wL)D-l(D + wU),

15



which _ves

MssoR = (D + wU)-ID(D + wL) -I

for some parameter _o.We take _o---1.

• ILUT(k)

The Incomplete LU decomposition is based on the LU decomposition of the coefficient

matrix A. The full LU decomposition of A would result in factors L and U which, in

general, have fax more nonzero elements than A. The incomplete LU factorization aims to
reduce this additional fill-in in the factors L and U.

In ILUT(k), we use the following strategy for dropping non-zero elements which would

fill-in L and U. Each row of L and U is constructed subject to the restriction that only

a small amount of fill-in, k more elements for each, is allowed beyond the number of

elements of A already present in that row (in the lower and upper part, respectively).

Furthermore, elements which are deemed to make only an insi_ficant contribution to the

decomposition are also dropped. For example, this means that if LENL is the maximum

number of elements allowed for some row of L, K is the actual number of elements of

that row computed by the elimination process, and TOL is the cutoff tolerance, then the

algorithm orders the K elements in decreasing order of magnitude, and keeps only up

to rrdn (K, LENL) elements, or until the elements reach the level TOL, whichever cutoff

comes first. The resulting matrices L and U are then used as M1 -- L, M2 = U.

Note that the variant of ILU used is different from the standard one. For a symmetric

matrix A, the standard ILU preconditioner [10] preserves the sparsity structure of the

matrix, i.e., for k - 0, the preconditioner matrices have non-zero elements only in those

locations where A itself has non-zero elements. In [10] it is shown that this strategy does

produce a good preconditioner, provided that A is a symmetric M-matrix. For a genera]

nonsymmetric matrix, there is no reason to preserve the sparsity structure of A. Since we

are mainly concerned with nonsymmetric matrices, our implementation discards elements

subject only to the constraints of fill-in and size, without regard to the sparsity structure

of A. However, this does mean that if A is symmetric, we do not recover the standard ILU

preconditioner.
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13. NUMERICAL EXPERIMENTS

In this section, we present some numerical examples obtained with our FORTRAN code.

We show both eigenvalue problems, which involve only the Lanczos algorithm, and non-

symmetric linear systems, which also involve the QMR algorithm. We also indicate how

many blocks of size bigger than 2 the algorithm built during each run. We only report

blocks that were successfully closed; blocks that were rebuilt after updating the estimate

for the norm of the matrix are not counted. Unless otherwise indicated, the elements of the

starting vectors vl and wl were random numbers from a normal distribution with mean 0.0

and variance 1.0. Also, in all cases, the user-supplied estimate for the norm of the matrix

was set to 1, thus forcing the algorithm to estimate the norm on its own. For eigenvalue

problems, we use the heuristic presented in [2] to identify and eliminate spurious eigenval-

ues. In the plots, we show the true eigenvalues of the matrix (denoted by '.'), as compared

to the computed Lanczos eigenvalues (denoted by 'o'). For the linear systems, the starting

guess x0 was always zero and the convergence requirement was a reduction by a factor of

10 -6 in the norm of the residual. We always used the QMR algorithm with no scaling,

i.e., _(,0 - 1,+1 in (9.7), and we preconditioned the systems as discussed in Section 12.

For the SSOR preconditioners, we always used w -- 1.0; for the ILUT preconditioners, we

used ILUT(0) and ILUT(4), with the threshold set to TOL = 0.001. While we only show

results for the right SSOR preconditioner, we also ran the left SSOR preconditioner, and

in all cases, the number of iterations needed to converge was roughly the same as for the

right SSOR preconditioner; we prefer the right preconditioner because its residual vector is

identical to the residual vector of the unpreconditioned system. In the plots, we show two

convergence curves: the top curve (solid) is the upper bound (10.10) used in the algorithm

for the residual norm, while the lower curve (dotted) is the computed residual norm. In

practice, one would monitor the upper bound until it reached the convergence range, and

then possibly switch to computing the true residual norm until convergence. The vertical

scale is the same on all the convergence plots, but the horizontal scale usually changes

from one plot to the next. Finally, unless otherwise indicated, all the examples were run

on a Sun Sparc Station 1, in double precision.

Example 1. The first example is taken from [1]. We include it here to make the point

that, as indicated in Section 2, singular and deficient polynomials do indeed occur. We

0 0 0 0 0 0 0 -1"

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

a __

have

"1' 07

1 0

0 1

0 0

, t01 = 0 _ tel-" 0

0 -1

0 0

.0. 0

With these starting vectors, the algorithm builds a 2 x 2 block, followed by a 4 x 4 block,

followed by 1 x 1 blocks. The 2rid and 4th degree polynomials are singular, while the
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5th, and 6th degree polynomials are deficient. After 8 steps, the algorithm finds invariant

subspaces with respect to both A and A T, and the computed eigenvalues match the true

eigenvalues exactly, as shown in Figure 1.

Example 2. This example is an eigenvalue problem, taken from [12], whose exact eigen-

values are known. Generally, problems of this type arise in modeling concentration waves

in reaction and transport interaction oi" chemical solutions in a tubular reactor. The par-

ticular test problem used here corresponds to the so-called Brusselator wave model. We

took N - 200 and computed eigenvalues after 20 (Figure 2) and alter 100 (Figure 3)

Lanczos steps. For the latter case, the algorithm built 2 blocks of size 2. As expected, the

extreme eigenvalues converge rapidly, while the interior ones require more iterations. For

this example, the Lanczos algorithm computes all the eigenvalues after 200 steps; however,

it requires as much work as the direct computation of the eigenvalues would require.

Example 3. This example comes from a problem in hydrodynamics. The aim is to

model a 2-D wave sloshing in a tank using integral equations and Green's theorem. The

approach used is to transform the elliptic mixed boundary-value problem into boundary

integrals, leading to mixed first and second kind equations, and then to discretize the

integral equations. This is done at every time step. it yields a dense nonsymmetric

matrix which is used to solve a system for the velocity at the boundary points. Once the

velocity is known, the free boundary is then advanced in time. The routine to generate

the matrix was provided by Dick Yue and Hongbo Xu from the MIT Department of Ocean

Engineering. We used the matrix as it arises at a time when the wave is beginning to

overturn (see Figure 4); the right and bottom walls are fixed, the left wall is a wave-maker

which produced the wave. In Figure 5, we show the convergence results for N = 640,

with the system preconditioned with the right SSOR preconditioner; the algorithm built 2

blocks of size 2. In this example, the right-hand side vector was prescribed by the physics

in the problem.

Example 4. This example is taken from [3]. The following partial differential equation

models heat conduction in a box, where a side is heated and the flow is rotating:

-_u+[vz v, vz].(Vu)--0 on (-1,1) x(-1,1)x(-1,1),

with Dirichlet boundary conditions u - _ 100 if z - -1,
( 0 otherwise.

(13.1)

Here,

= CpCo z(1- x2)2(1- y2)(1- z2).

¢,,- -c'1.ClZ (1-  2)2(1-  2)(1 - ,,2).

,,. - -c,,clzy(1 - z2)2(1- z2)(1- v2),

Co = 27/2, C1 = Co/2,
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and Cp > 0 is a free parameter. We discretize (13.1) using centered differences on a uniform

m × m x m grid with mesh size fi = 2/(m _- 1). The resulting linear system has a sparse

coefficient matrix A of order N = rn 3. For our experiments, we have chosen the parameter

Cp = 1/h. Note that this choice guarantees that the cell Reynolds number is smaller than

one, and hence centered differences yield a stable cliscretization of (13.1). In this and all

subsequent sparse examples, we have relied heavily on routines from SPARSKIT [14] for

the basic matrix operations. In Figure 6, we show the convergence results for m -- 31

(N - 29791), with the system preconditioned with the right SSOR preconditioner; the

algorithm built only 1 × 1 blocks. The right-hand side vector was chosen to describe

a physically possible solution. This example was run on a Cray-2 at the NASA Ames

Research Center.

Example 5 and 6. Finally, Examples 5 and 6 were taken from the Harwell-Boeing sparse

matrix collection [4]. On these examples, we ran both the SSOR preconditioners, and two

versions of the ILUT preconditioner, namely ILUT(0) and ILUT(4). Example 5 is the first

matrix from the OILGEN collection, called ORSREG 1. It comes from an oil reservoir

simulation on a 21 x 21x 5 full grid; the order of the matrix is 2205, and it has 14133 non-zero

elements. In Figure 7, we show the convergence curves for the right SSOR preconditioner,

in Figure 8, the convergence curves for ILUT(0), and in Figure 9, the convergence curves

for ILUT(4). The algorithm built one block of size 2 for the SSOR preconditioner, one

block of size 2 and one of size 3 for the ILUT(0) case, and no blocks of size bigger than

1 for the ILUT(4) case. Example 6 is the fifth matrix from the SHERMAN collection,

called SHERMAN 5. It comes from a fully implicit black oil simulator on a 16 x 23 × 3

grid, with three unknowns. The order of the matrix is 3312, and it has 20793 non-zero

elements. In Figure 10, we show the convergence curves for the right SSOR preconditioner,

in Figure 11, the convergence curves for 1LUT(0), and in Figure 12, the convergence curves

for ILUT(4). For this case, the convergence curves for the two ILUT preconditioners are

almost identical. The algorithm built one block of size 2 for the 5SOR preconditioner,

three blocks of size 2 for the ILUT(0) case, and one block of size 2 for the ILUT(4) case.
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14. CONCLUDING REMARKS

We have proposed a robust iterative solver for non-Hermitian linear systems. Based on the

look-ahead Lanczos algorithm described in Part I [6] of the paper, the method generates

iterates which are characterized by a quasi-minimal residual (QMR) property. The QMR

approach is closely related to the biconjugate gradient (BCG) algorithm; however, unlike

BCG, the QMR algorithm has smooth convergence curves and good numerical properties.

For the case of real nonsymmetric matrices A, we have FORTRAN implementations

of the QMR method and the underlying look-ahead Lanczos algorithm. These programs

are listed in the Appendix. These codes are available electronically from the authors

(na.freund@na-net.stanford.edu or na.nachtigal_na-net.stanford.edu).

Acknowledgements. The authors would like to thank Youcef Saad, who provided us

with routines for generating test Example 2, and Dick Yue and Hongbo Xu for generating

the matrices for test Example 3.
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APPENDIX

In this appendix we present FORTRAN codes listings for the Lanczos and QMR routines.

We also make the correspondence between variables in the code and their name in this

paper. Under each routine, each variable also appearing in the paper is listed as it appears

in the code, followed by its name in the paper and an equation or a section number. The

equation number listed is either the defining equation, if one exists, or the first equation

where the variable appears, if a defining equation does not exist. In the latter case, the

variable is usually defined in the text before or after the equation listed. The section

number appears for variables which are defined in the introduction or in the first part of
the notation section.

The work estimates for one step of this implementation of the look-ahead Lanczos

algorithm are as follows:

• On the average, the algorithm builds 1 × 1 blocks, and requires:

1

1

2. (n - nk-1 + 1)

4

multiplication by A

multiplication by A T

DAXPY operations of length N

DDOT operations of length N

• If building a pair of inner vectors, then the worst case requires:

1

1

2. (n- nk-1 + 1) + 4

5

1

1

multiplication by A

multiplication by A T

DAXPY operations of length N

DDOT operations of length N

SVD of a (n - nk-1 + 1) x (n - nk-1 + 1) matrix

(n - nk-1 + 1) 3 work to compute the inverse

The additional work comes from the inner recursion (DAXPY), the SVD of a matrix of

size bigger than 1 (and computing its inverse), and finally, the one dot product we have

to recompute in cases when we first build a regular vector and then discover that it fails

(4.12). In addition, when the Lanczos vectors are scaled, the algorithm performs two

DSCAL operations of length N (we have ignored in the above O(n - nk-1 + 1) work).
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The routines are organized asfollows:
• DLAL

This routine is the lowest level routine, implementing one step of the Lanczos algorithm

with look-ahead. The routine is called both by the eigenvalue code and by the linear

systems' solver.

N -n (3)

NK = nk (3)

NKM1 - nk-] (3)

NLEN = g (1)

sc(1 i) _ (3.1)
_- 8i_i

sc(2,1) = t,_l-U- (3.1)

sc(z,i) = _ (3.1)

SC(4, i) --_i (3.2)

SC(5,|) -- ai (3.2)

TETA = r/, (3.8)

TZETA = ¢,, (3.8)

VW(:, Q(i)) =_ (3.2)

VW(:,M + Q(i)) = tbi (3.2)

WK(:, 1: M) = (I_VTVk) (3.7)

WK(:,M + 1: 2. M) = (12gTf'k) -' (3.7)

WK(:,3. M +5) = (l_¢'T_ll)k_l)--ll_rT_ 1 (4.1a)

WK(:,3, M +6) = (I'_vTQ't,)-zI_T (4.15)

• EIGLAL

This routine is the shell routine used in eigenvalue problems. It sets up the Hessenberg

matrix that can be used to compute eigenvalue estimates for A, but does not actually

compute the eigenvalue estimates. In general, some further processing is needed to

compute the eigenvalues, and then identify and discard spurious and ghost eigenvalues.

H =/t(") (3)

N =n (3)

NK = nk (3)
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NKM1 = nk-1 (3)

NLEN = N (1)

SC(1,i) = si (3.1)
3i--1

SC(2, i) = titi_l (3.1)

sc(3,i) = _ (3.1)

SC(4, i) = (i (3.2)

SC(5, i) = ai (3.2)

VW(:, Q(I)) = ,3i (3.2)

VW(:,M + Q(|)) = dJi (3.2)

WK(:, 1" M) = (I?VTVk) (3.7)

WK(:,M + 1: 2, M) = (I_TI?,) -' (3.7)

WK(:,3 • M + 5) = (I_T_I IYk-1)-ll_T_ 1 (4.1a)

WK(:,3, M +6) = (IpTIYk)-IIP T (4.15)

• SYSLAL

This routine is the shellroutine used in solving [{nearsystem. It attempts to solve a

linearsystem using the Lanczos-QMR algorithm.

NLEN = N (1)

sc(1,1) - _' = o_ (3.1), (s.o)
8i_1

= _ (3.1)SC(2,i)

SC(3,i) = _i (3.1)

sc(4,i) = _i (3.2)
sc(5,1) = _ (3.2)

vw(:, Q(i)) =,5i (3.2)
VW(:,M + q(i)) =d_i (3.2)

VW(:, 2 • M + 3) = b (9.1)

VW(:,2,M +4) =x, (10.14)

VW(:,2,M+5:3,M+4) =[Pk-1 Pk] (10.13)

WE(:, 1: M) = (l)dTlYk) (3.7)

WK(:, M + 1:2 • M) = (IpTI;'k)-I (3.7)

---- ( k--1WK(:,3, M + 5) IYvT I;'k_l)-ll)dT 1 (4.1a)
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WK(:, 3 • M + 6)

WK(Q(1), 3 • M + 9)
WK(Q(i), 3. M + 10)

wK(q(1), 3 • M + 11)

WK(Q(i), 3 • M + 12)

WK(Q(i), 3 • M + 13)

WK(:,3* M + 15 : 4. M + 14)

WK(:,4 : M + 15 : 5 : M + 14)

Ci

-- 8i

= (t(")),
= (zr),
-- Yk
-- Rk

(4.1b)
(9.7)

(lO.2)
(lO.2)

(9.11)

(10.15)

(10.15)
(10.15)

• DETA

This routine computes one of the coefficients for the inner recursion.

DETA(i) = r/, (3.8)

• DZETA

This routine computes one of the coefficients for the inner recursion.

DZETA(i) = ¢i (3.8)

• GETOMG

This routine computes the sealing factors wi for the QMR algorithm.

GETOMG(1) --wi (0.7)
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C

C Copyright (C) 1990, Roland W. Freund and Noel M. Nachtigal
C All rights reserved.
C

C No part of this code may be reproduced, stored in a retrieval

C system, translated, transcribed, transmitted or distributed in

C any form or by any means means, manual, electric, electronic,

C electo-magnetic, mechanical, chemical, optical, photocopying,
C recording, or otherwise, without the prior explicit written

C permission of the author(s) or their designated proxies. In no

C event shall the above copyright notice be removed or altered in
C any way.
C

C This code is provided "as is", without any warranty of any kind,

C either expressed or implied, including but not limited to, any

C implied warranty of merchantibility or fitness for any purpose.

C In no event will any party who distributed the code be liable for

C damages or for any claim(s) by any other party, including but not
C limited to, any lost profits, lost monies, lost data or data

C rendered inaccurate, losses sustained by third parties, or any

C other special, incidental or consequential damages arising out of

C the use or inability to use the program, even if the possibility

C of such damages has been advised against. The entire risk as to

C the quality, the performance, and the fitness of the program for

C any particular purpose lies with the party using the code.
C

C *****************************************************************

C ANY USE OF THIS CODE CONSTITUES ACCEPTANCE OF THE TERMS OF THE

C ABOVE STATEMENTS
C *****************************************************************

C

***********************************************************************

C

C This file contains the basic routines for the look-ahead Lanczos

C algorithm. DLAL carries out one step of the algorithm and DSCALE

C is used to scale the Lanczos vectors. DEPS is used by DSCALE to

C compute machine epsilon, DADD is called by DEPS to ensure that no

C unwanted optimization takes place, and DZERO is called by DLAL to

C zero out vectors (it is also used elsewhere in the code).
C

C

SUBROUT INE DLAL (ND IM, NLEN, M, N, NK, NKMI, VW, S C, WK, Q, NORMS, TOL, TF,
$ INFO)

C

C Purpose:

C This subroutine carries out one step of the look-ahead Lanczos

C algorithm. The matrix A is referenced solely through the external

C subroutines AXB and ATXB, which are of the form:
C

C SUBROUTINE AXB (X,B) - computes B - A * X.

C SUBROUTINE ATXB (X,B) - computes B - A^T * X.
C

C Most of the inputs to this routine are not checked for validity;

C it is the resposibility of the caller to ensure that the various

C dimensions, indices, and data are valid, and that the output unit

C TF (when applicable) is ready for output. The only inputs checked

C are the tolerances in TOL, which, when they are non-positive, are

C replaced with default values as follows:

C TOL(1) - I/TOL(2)

C TOL(2) - eps^{I/2}

C TOL(3) = eps^{i/4}

C TOL(4) = eps^{i/3)

C Here, eps is machine epsilon.

C Normally, this routine is not called directly from the top-most
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C

C

C

C

C

C

C
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

level, but rather from an intermediate routine that uses Lanczos

to solve either eigenvalue problems or linear systems. The caller

initializes the following:

VW(:,Q(1)) - the first Lanczos vector V 1

VW(:,M+Q(1)) - the first Lanczos vector W 1

SC(:,I) - the scaling factors for V 1 and W_I

WK(1,1) - the dot product W I^T V 1
i I

Q - the array of wrapped indices

NORMS(l) - the initial estimate for the norm of A

TOL(I:4) - tolerances (optional)

Thereafter, it is usually left up to this routine to update the

variables used. Upon exit, N, NK, NKMI, VW, SC, WK, NORMS, TOL,

and INFO might be changed.

Parameters:

NDIM = the dimensioned size of the array VW (input).
NLEN - the actual size of the Lanczos vectors V and W; this also

implicitly determines the size of the matrix A (input).
M - the maximum number of Lanczos vectors that can be stored

in the array VW. It is related to the size of the largest

block that can be built. The algorithm runs out of memory
when the number of vectors in the last block and in the

current block reaches M. For this reason, M must be at

least 3; note that this is not checked (input).

= the index of the last pair of vectors (input/output).

m the index of the last regular vectors (input/output).

- the index of the next-to-the-last regular vectors (input/

output).

- work array dimensioned (NDIM, 2*M+2) words. It is used to

store the Lanczos vectors V in VW(:,I:M), the vectors W

in VW(:,M+I:2*M), and two temporary vectors used by DLAL

in VW(:,2*M+I) and VW(:,2*M+2). The Lanczos vectors V and

W are stored wrapped, i.e., V_N is stored in VW(:,Q(N)),
and W N is stored in VW(:,M+Q(N)), where Q(N) is assumed

to be--a wrapped index array -- see below (input/output).

- work array dimensioned (5,M) words, used for the various
scale factors. We have:

SC(I,i) - S(i) / S(i-1)

SC(2,i) - T(i) / T(i-l)

SC(3,i) - S(i) / T(i)

SC(4,i) - CSI(i)

SC(5,i) - SIG(i)

Note that the scale routine DSCALE expects to receive the
scale factors in a 5xl vector as the one described above

(input/output).

- work array dimensioned (M,3*M+6) words, used for internal
variables. We have:

WK( :, 1 :M) - (W_{NK}^T V_{NK})

WK(:,M+I:2*M) - (W_{NK}^T V_{NK})^{-I}

WK(:,2*M+I:3*M) - work array for the SVD

N

NK

NKMI

VW

SC

WK

Q

WK(: ,3*M+I)

WK(:, 3"M+2)

WK( :,3"M+3)

WK (:,3"M+4)

WK(:, 3"M+5)

WK( :,3"M+6)

- temporary vector

- temporary vector

- temporary vector
- the saved last column of the matrix

(W_{NKMI) ^T V_{NKMI )) ^ {-1 }

- H (NK :NKPI, N)

- H (NK:NKPI, N+I)

Of particular interest to the caller are H(NK:NKPI,N) and

H(NK:NKPI,N+I), since they are parts of the columns of H.

Usually, the caller will extract these after each call
and either store them so as to form H (for eigenvalues)

or use them to update X_N (for linear systems) (input/

output).

- integer array specifying the indices for all the wrapped
variables (V,W, SC,WK). To allow the algorithm to run more

than M steps, these variable wrap around, in that Q(I) is
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TOL

INFO

the index of the slots where that variables are stored at
the I-th step. Normally, these indices would be in order,
basically Q(I) - I MODM + I, but the algorithm makes no
assumptions to this effect. These indices are not checked
in any way for validity (input).

NOFuMS- vector with estimates for the norm of A. NORMS(I) is the
current estimate. It should be at least slightly larger
than 1.0, to avoid the possible effects of roundoff for
the identity matrix. For this reason, the routine will
change it to 2.0 if it is smaller than 2.0. NORMS(2) is
what the estimate should be to allow closure of blocks

caused by the norm check. A value of 0.0 indicates that

no estimates are available, i.e., all inner vectors were

built due to the moment matrix being singular. The second

estimate is usually used in conjunction with restarting a

block if the algorithm runs out of memory (input/output).
- vector with the tolerances used in the various checks. We

have:

TOL(1) - upper bound for the range of CSI and SIG

TOL(2) - lower bound for the range of CSI and SIG

TOL(3) - convergence tolerance for the norms of the

Lanczos vectors

TOL(4) - level below which the singular values of

(W_{NK}^T V {NK}) are considered zero
Note that the scale rou[ine DSCALE expects to receive the

first three tolerances in a 3xl vector as described. The

values supplied by the caller are checked for validity

and default values (see above) are supplied if the user

provides a non-positive value for any of the tolerances

(input/output).

TF = output unit for a trace file. If TF non-zero, the routine

will output to unit TF trace messages detailing execution

decisions. The output unit is assumed to be available and

ready (input).

- information passing variable.

On input:
INFO - 0

INFO - 1
--> proceed normally

--> closing the block strongly recommended;

if the block doesn't close naturally, do

not update the counters, but update the

norm estimate, if possible.
Upon exit:

INFO - 0

INFO < 0
--> nothing to report

--> the SVD routine returned this error code

(but with positive sign)

INFO - I --> an A-invariant subspace has been found

INFO - 2 --> an A^T-invariant subspace has been found

INFO - 3 ---> both subspaces have been found

INFO - 4 --> the block did not close, though strongly

recommended (INFO-I on input); updated

norm estimate, but did not compute any

vectors and did not update the counters.

(input/output).

External routines used:

subroutine axb(x,b)

Computes b - A * x.
subroutine atxb(x,b)

Computes b - A^T * x.

subroutine daxpy(n, da,dx, incx,dy, incy)

Computes dy - da * dx + dy.

subroutine dcopy(n, dx,incx, dy, incy)

Computes dy - dx.

double precision ddot(n,dx, incx, dy, incy)

Computes dy' * dx.

double precision deta(i)
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Computes the second recursion scalar for the inner vectors.
subroutine dscal (n, da, dx, incx)

Computes dx - da * dx.
subroutine dscale (nact, v, w, sc, tol)

Computes the scaling factors for v and w.

subroutine dsvdc (x, Idx, n,p, s, e, u, idu, v, idv, work, Job, info)

Computes the singular value decomposition of x.

subroutine dzero(n,dx,incx)

Zeros out dx.

double precision dzeta(i)

Computes the first recursion scalar for the inner vectors.

Noel M. Nachtigal

August 28, 1990

C

INTRINSIC ABS, MAX, MIN

EXTERNAL DDOT, DEPS, DETA, DZETA

DOUBLE PRECISION DDOT, DEPS, DETA, DZETA

C

INTEGER INFO, M, N, NDIM, NK, NKMI, NLEN, Q(*), TF

DOUBLE PRECISION NORMS (2), SC(5,M), TOL(4)

DOUBLE PRECISION VW (NDIM, 2"M+2), WK (M, 3"M+6)

C

C Local variables.

C

INTEGER HBASE, I, J, LCL, LINFO, NPI

DOUBLE PRECISION ANORM, INVCSI, INVSIG, DTMP, DTMPI, DTMP2

DOUBLE PRECISION NUNORM, TETA, TZETA, WNV, WNPIV
LOGICAL INNER

C

C Check the tolerances and the norm estimate.

C

IF (TOL(2).LE.0.0) TOL(2) -DEPS()**(I.0/2.0)

IF (TOL(1).LE.0.0) TOL(1) - 1.0 / DEPS()

IF (TOL(3).LE.0.0) TOL(3) - DEPS()**(I.0/4.0)

IF (TOL(4).LE.0.0) TOL(4)-DEPS()**(I.0/3.0)

NORMS(I) - MAX(NORMS(I),2.0D0)

C

C Compute local counters.
C

NPI - N + 1

LCL - N - NK + 1

HBASE - 1 - NKMI

IF (NKMI.EQ.0) HBASE - 0

C

C Initialize the norm estimate.

C

ANORM - NORMS(1)

NUNORM - NORMS (2)

C

C Zero out the work portion of the column of H.

C
CALL DZERO (LCL,WK(HBASE+NK, 3*M+5),I)

C

C Compute the matrix-vector products.

C
CALL AXB (VW(I,Q(N)),VW(I,2*M+I))

CALL ATXB (VW(I,M+Q(N)),VW(I,2*M+2))

C
C Subtract the part common to both types of vectors. This is also

C done to enhance the numerical properties.

C
INVSIG = 1.0 / SC(5,Q(N))

INVCSI = 1.0 / SC(4,Q(N))
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IF (NKMI.GT.0) THEN

DO i0 I - NKMI, NK-I

DTMP2 - WK (HBASE+I, 3"M+5)

DTMPI - INVSIG * SC(5,Q(I)) * DTMP2

CALL DAXPY (NLEN,-DTMPI,VW(I,Q(I)),I,VW(I,2*M+I),I)

DTMPI - INVCSI * SC(4,Q(I)) * DTMP2 * SC(3,Q(N))
/ SC(3,Q(I))

CALL DAXPY (NLEN,-DTMPI,VW(I,M+Q(I)),I,VW(I,2*M+2),I)
CONTINUE

END IF

Compute the inner product (W_N^T A \tilde{V}__N).

WNV - DDOT(NLEN, VW(I,M+Q(N)),I,VW(I,2*M+I),I)

Compute the SVD of (W_{NK}^T V_{NK}). We have to copy it first to

a temporary array, since the DSVDC routine destroys its argument.

From the DSVDC routine, we want both singular values and singular
vectors, hence JOB = Ii.

DO 20 J = I, LCL

CALL DCOPY (LCL, WK(I,J),I,WK(I,M+J),I)
CONTINUE

CALL DSVDC (WK(I,M+I),M, LCL, LCL,WK(I,3*M+3),WK(I,3*M+2),

$ WK (I, 2*M+I) ,M, WK (I,M+I) ,M, WK (I, 3*M+I), ii, LINFO)

Check for error in DSVDC; abort on error.

LINFO - -LINFO

IF (LINFO.NE.0) GO TO 120

Check the smallest singular value to determine singularity of the

moment matrix (W__{NK}^T V_{NK}).

DTMP - WK(I,3*M+3)

DO 30 I - 2, LCL

DTMP _ MIN(DTMP,WK(I,3*M+3))
CONTINUE

INNER - DTMP.LE.TOL(4)

IF (INNER.AND.(TF.NE.0)) THEN

WRITE (TF,' (A7,I5,A21)') 'Vector ',NPI,' is an inner vector; '

WRITE (TF,' (A31,EI0.3)') '--> moment matrix is singular: ',DTMP
END IF

IF (.NOT.INNER) THEN

Matrix is not singular, compute its inverse. WK(:,M+I) has the

right singular vectors, WK(:,2*M+I) has the left singular vectors

and WK(:,3*M+3) contains the singular values. We save the inverse
in WK(:,M+I).

DO 40 I - i, LCL

CALL DSCAL (LCL, I.0/WK(I,3*M+3),WK(I,M+I),I)

CONTINUE

DO 60 I - I, LCL

DO 50 J - i, LCL

WK(J,3*M+2) - DDOT(LCL,WK(I,M+I),M, WK(J, 2*M+I),M)
CONTINUE

CALL DCOPY (LCL,WK(I,3*M+2),I,WK(I,M+I),M)
CONTINUE

Compute the (W_{NK}^T A V_N) term.

WK(LCL, 3*M+2) = SC(5,Q(N)) * SC(4,Q(N)) * WNV

DO 70 I = i, LCL-I

DTMP = SC(2,Q(NK+I)) * WK(I+I,LCL) + DZETA(I-I) * WK(I,LCL)
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IF (I.GT.I) THEN

DTMP - DTMP + DETA(I-I) * WK(I-I,LCL) / SC(2,Q(NK+I-I))

END IF

WK(I,3*M+2) - DTMP

CONTINUE

Compute H(NK:N,N) - (W_{NK}^T V_{NK})^{-I} W_{NK}^T A V_N.

Check whether we can build a regular vector with it.

DTMPI - 0.0

DTMP2 - 0.0

DO 80 I - I, LCL

WK(I,3*M+I) - DDOT(LCL,WK(I,M+I),M, WK(I,3*M+2),I)

DTMP - ABS(WK(I,3*M+I))
DTMPI _ DTMPI + DTMP

DTMP2 - DTMP2 + DTMP / SC(3,Q(NK+I-I))
CONTINUE

DTMP2 - SC(3,Q(N)) * DTMP2

INNER - (DTMPI. GT. ANORM) .OR. (DTMP2. GT. ANORM)

IF (INNER) THEN

One or both of the norm checks has failed, we have to build an

inner vector. Output trace messages and update norm estimate.

IF (TF.NE.0) THEN

WRITE (6,'(A7, I5,A21)')

'Vector ',NPI,' is an inner vector;'

IF (DTMPI.GT.ANORM) WRITE (6,' (A29,EI0.3)')
'--> second term in V is bad: ',DTMPI/ANORM

IF (DTMP2.GT.ANORM) WRITE (6,' (A29,EI0.3)')

'--> second term in W is bad: ',DTMP2/ANORM
END IF

DTMPI - MAX(DTMPI,DTMP2)

IF (NUNORM.EQ.0.0) THEN
NUNORM - DTMPI

ELSE

NUNORM - MIN(NUNORM, DTMPI)
END IF

END IF

END IF

IF (.NOT.INNER) THEN

We can build a regular vector, let's do it.

vectors to the proper slots in V and W.

Copy the temporary

CALL DCOPY (NLEN,VW(I,2*M+I),I,VW(I,Q(NPI)),I)

CALL DCOPY (NLEN,VW(I,2*M+2),I,VW(I,M+Q(NPI)),I)

Add in the term V_{NK} H(NK:N,N).

DO 90 I - NK, N

DTMP2 - WK(I-NK+i,3*M+I)

DTMPI - INVSIG * SC(5,Q(I)) * DTMP2

CALL DAXPY (NLEN,-DTMPI,VW(I,Q(I)),I,VW(I,Q(NPI)),I)

DTMPI - INVCSI * SC(4,Q(I)) * DTMP2 * SC(3,Q(N))

/ SC(3,Q(I))

CALL DAXPY (NLEN,-DTMPI,VW(I,M+Q(I)),I,VW(I,M+Q(NPI)),I)

CONTINUE

Scale the new vectors.

SC (3,Q (NPI)) - SC (3,Q (N))

SC(4,Q(NPI)) - SC(4,Q(N))

SC(5,Q(NPI)) - SC(5,Q(N))
CALL DSCALE (NLEN, VW(I,Q(NPI)),VW(I,M+Q(NPI)),SC(I,Q(NPI)),TOL)



C
C
C
C

C

C
C
C

C

C

C

C
C

C

C
C

C

C
C

C

I00

WK(HBASE+NPI,3*M+5) - SC(I,Q(NPI))

Compute the inner product (W_{N+I }^T V_{N+I}) .

WNPIV - DDOT(NLEN, VW(I,M+Q(NPI)),I,VW(I,Q(NPI)),I)

Compute the term W_{NK}^T A V_{N+I} and its 1-norm.

CALL DCOPY (LCL, WK(I,M+LCL),I,WK(I,3*M+2),I)

DTMP = SC(5,Q(NPI)) * SC(4,Q(NPI)) * SC(2,Q(NPI)) * WNPIV

CALL DSCAL (LCL,DTMP,WK(I,3*M+2),I)

Check whether we can build either vector at the next step.

DTMPI - 0.0

DTMP2 = 0.0

DO I00 I - I, LCL

DTMP - ABS(WK(I,3*M+2))
DTMPI - DTMPI + DTMP

DTMP2 - DTMP2 + DTMP / SC(3,Q(NK+I-I))
CONTINUE

DTMP2 - SC(3,Q(N)) * DTMP2

INNER - (DTMPI. GT. ANORM) .OR. (DTMP2. GT. ANORM)

The next vector would be bad, we have to build an inner vector.

Output trace messages and update the norm estimate.

$

$

$

IF (INNER) THEN

IF (TF.NE.0) THEN

WRITE (6,' (A7,15,A21)')

'Vector ',NPI,' is an inner vector;'

IF (DTMPI.GT.ANORM) WRITE (6,' (A30,EI0.3)')

'--> next vector V will be bad:',DTMPI/ANORM

IF (DTMP2.GT.ANORM) WRITE (6,' (A30,EI0.3)')

'--> next vector W will be bad:',DTMP2/ANORM
END IF

DTMPI - MAX(DTMPI,DTMP2)

IF (NUNORM.EQ.0.0) THEN
NUNORM - DTMPI

ELSE

NUNORM - MIN (NUNORM, DTMP 1)
END IF

END IF

END IF

IF (INNER) THEN

Check whether we were supposed to close the block.

without computing anything else.

IF (INFO.NE.0) THEN

LINFO - 4

GO TO 120

END IF

If so, return

We are building an inner vector. Copy the temporary vectors to

the proper slots in V and W.

CALL DCOPY (NLEN,VW(I,2*M+I),I,VW(I,Q(NPI)),I)

CALL DCOPY (NLEN,VW(I,2*M+2),I,VW(I,M+Q(NPI)),I)

Add the terms from the inner vector recursion.

TZETA - DZETA(N-NK)

WK(HBASE+N, 3"M+5) - TZETA

CALL DAXPY (NLEN,-TZETA, VW(I,Q(N)),I,VW(I,Q(NPI)),I)
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CALL DAXPY (NLEN,-TZETA, VW(I,M+Q(N)),I,VW(1,M+Q(NPI)),I)

IF (LCL.GT.I) THEN
TETA - DETA (N-NK)

DTMP2 - TETA * INVSIG * SC(5,Q(N-I)) / SC(I,Q(N))

CALL DAXPY (NLEN,-DTMP2,VW(I,Q(N-I)),I,VW(I,Q(NPI)),i)

DTMP2 - TETA * INVCSI * SC(4,Q(N-I)) / SC(2,Q(N))

CALL DAXPY (NLEN,-DTMP2,VW(I,M+Q(N-I)),I,VW(I,M+Q(NPI)),I)

WK(HBASE+N-I,3*M+5) - TETA / SC(I,Q(N))
END IF

Scale the new vectors.

SC (3,Q (NPI)) - SC (3,Q (N))

SC(5,Q(NPI)) - SC(5,Q(N))

SC(4,Q(NPI)) - SC(4,Q(N))

CALL DSCALE (NLEN, VW(I,Q(NPI)),VW(I,M+Q(NPI)),SC(I,Q(NPI)),TOL)

WK(HBASE+NPI,3*M+5) = SC(I,Q(NPI))

Compute the inner product (W_{N+I}^T V {N+I}).

WNPIV - DDOT(NLEN, VW(1,M+Q(NPI)),I,VW(I,Q(NPI)),I)

Update the matrix (W_{NK}^T V_{NK}).

WK(LCL+I,LCL+I) - SC(5,Q(NPI)) * SC(4,Q(NPI)) * WNPIV

DTMP - SC(5,Q(N)) * SC(4,Q(N)) * WNV - TZETA * WK(LCL, LCL)

IF (LCL.GT.I) THEN

DTMP - DTMP - TZETA * WK(LCL, LCL-I) / SC(I,Q(N))
END IF

WK(LCL, LCL+I) - DTMP / SC(I,Q(NP1))

WK(LCL+I,LCL) - DTMP / SC(2,Q(NPI))

DTMP2 - SC(3,Q(NPI)) / SC(3,Q(N))

DO ii0 I - LCL-I, i, -i

DTMPI - (DZETA(I) - TZETA) * WK(I,LCL)

- TETA * WK(I,LCL-I) / SC(I,Q(N))

+ SC(2,Q(NK+I)) * WK(I+I,LCL)

IF (I.GT.I) THEN
DTMPI - DTMPI + DETA(I) * WK(I-I,LCL) / SC(2,Q(NK+I-I))

END IF

DTMPI -DTMPI / SC(I,Q(NPI))

DTMP2 - DTMP2 * SC(3,Q(NK+I)) / SC(3,Q(NK+I-I))

WK(LCL+I,I) - DTMPI * DTMP2

WK(I, LCL+I) - DTMPI

CONTINUE

Initialize H(NKMI:NK-I,N+I) for the next step. It is the last

column of (W_{NKMI}^T V_{NKMI})^{-I}, scaled appropriately.

IF (NKMI.GT.0) THEN

DTMP - SC(2,Q(NK)) * WK(I,LCL+I)

CALL DCOPY (NK-NKMI,WK(I, 3"M+4) ,I,WK(I, 3"M+6) ,I)

CALL DSCAL (NK-NKM1,DTMP,WK(I,3*M+6), I)

END IF

ELSE

We have built a regular vector. Output trace message.

IF (TF.NE.0) WRITE (6,'(A7,15,A21)')

$ 'Vector ',NPI,' is a regular vector.'

Save H(NK:NKPI-I,N).

CALL DCOPY (LCL, WK(I,3*M+I),I,WK(HBASE+NK, 3*M+5),I)

Save the last column of (W_{NK}^T V_{NK})^{ -I} for next step.
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CALL DCOPY (LCL, WK(I,M+LCL),I,WK(I,3*M+4),I)

Initialize H(NK:NKPI-I,N+I) for next step.

CALL DCOPY (LCL, WK(I,3*M+2),I,WK(I,3*M+6),I)

WK(I,I) - SC(5,Q(NPI)) * SC(4,Q(NPI)) * WNPIV

Update the counters.

NKMI = NK

NK = N + 1

END IF

Update the running counter.

N = N + I

Check for termination.

LINFO - 0

IF (SC(4,Q(NPI)).EQ.-I.0) LINFO = LINFO + 1

IF (SC(5,Q(NPI)).EQ.-I.0) LINFO - LINFO + 2

Save the updated norm estimate and set the INFO variable.

NORMS(2) - NUNORM

INFO - LINFO

RETURN

END

C

C

DOUBLE PRECISION FUNCTION DADD (X)
C

C

C

C

C

C

C

C

C

C

C

Purpose:

Computes X + i.0. Used by the DEPS function

optimizer doesn't affect the results.

to ensure that the

Parameters:

X - the variable to add 1.0 to (input).

Noel M. Nachtigal

November 18, 1987

DOUBLE PRECISION X

DADD - X + 1.0

RETURN

END

C

C

C

C

C

C

C
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C

C

C

C

DOUBLE PRECISION FUNCTION DEPS ()

Purpose:

Computes double precision machine epsilon, the smallest number

which, when added to 1.0, gives 1.0. This function could use the
radix of the machine to obtain a better estimate, but its result

is good enough for our purposes. It does attempt to ensure that

any optimization does not affect the result.

External routines used:

double precision dadd(dx)
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Computes dx = dx + i. Used to get around optimizers.

Noel M. Nachtigal

October 25, 1990

EXTERNAL DADD

DOUBLE PRECISION DADD

Local variables.

DOUBLE PRECISION DTMP

DTMP - 1.0

IF (DADD(DTMP).GT.I.0) THEN

DTMP - DTMP / 2.0

GO TO 30

END IF

DEPS - DTMP

RETURN

END
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SUBROUTINE DSCALE (N,V, W, SC, TOL)

Purpose:
Does scaling in the Lanczos algorithm. Scales the vectors V and W

to unit length. Also checks for invariant subspaces. Note that it

does not check its inputs for validity.

Parameters:

N - the length of the vectors (input).
V - the Lanczos vector V, scaled on output (input/output).

W - the Lanczos vector W, scaled on output (input/output).

SC(1) - S_{N+I} / S_N (output).

SC(2) - T_{N+I} / T_N (output).

SC(3) - on input, S_N / T_N; on exit, S_{N+I} / T_{N+I} (input/

output).

SC(4) - on input, CSI_N; on exit, CSI_(N+I}. If it is -i.0, then
the norm of W was less than TOL(3) on input, indicating

an invariant subspace for A^T (input/output).

SC(5) - on input, SIGMA_N; on exit, SIGMA_{N+I}. If it is -I.0,
then the norm of V was less than TOL(3) on input,

indicating an invariant subspace for A (input/output).

TOL(1) - the level above which vectors will be scaled (input).

TOL(2) - the level below which vectors will be scaled (input).

TOL(3) - the tolerance level below Which the norms of the vectors

are treated as zero (input).

External routines used:

double precision dnrm2(n, dx,incx)
Returns the 2-norm of dx.

subroutine dscal(n, da,dx, incx)

Computes dx - da * dx.

Noel M. Nachtigal

August 28, 1990

EXTERNAL DNRM2

DOUBLE PRECISION DNRM2

INTEGER N

DOUBLE PRECISION SC(*), TOL(3), V(*), W(*)
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Local variables.

DOUBLE PRECISION TMPS,TMPT

Initialize the scale factors.

SC(1) - DNRM2(N,V,I)

SC(2) - DNRM2(N,W,I)

IF (SC(1)*SC(5).LE.TOL(3)) SC(5) =-i.0

IF (SC(2)*SC(4).LE.TOL(3)) SC(4) --i.0

IF ((SC(4).LT.0.0).OR.(SC(5).LT.0.0)) RETURN

Compute the scale factors and scale the vectors.

TMPS - 1.0 / SC(1)

TMPT - 1.0 / SC(2)

IF ((TMPS.LE.TOL(2)) .OR. (TMPS.GE.TOL(1))) THEN

CALL DSCAL (N, TMPS,V, I)
TMPS - 1.0

END IF

IF ((TMPT.LE.TOL(2)).OR. (TMPT.GE.TOL(1))) THEN

CALL DSCAL (N, TMPT,W,I)

TMPT- 1.0

END IF

SC(1) - SC(5) * SC(1)

SC(2) - SC(4) * SC(2)

SC(3) - SC(1) * SC(3) / SC(2)

SC(4) - TMPT

SC(5) - TMPS

RETURN

END

C

C

SUBROUTINE DZERO (N, DX, INCX)

C

Purpose:

Zeroes out DX.

C

C

C

C

C

C

C

Parameters:

N - the length of the vector DX (input).

DX - the vector to be zeroed out (output).

INCX - the increment in the vector DX (input).

Noel M. Nachtigal

October 26, 1990

INTRINSIC MOD

INTEGER INCX, N

DOUBLE PRECISION DX(*)

Local variables.

INTEGER I, IX, M, MPI

IF (N.LE.0) RETURN

IF (INCX.NE.I) GO TO 40

Code for increment equal to i.

M = MOD(N,8)



I0

2O

3O

C
C
C

40

5O
C

IF (M.EQ.0) GOTO 20
DO 10 I - l, M

DX(I) - 0.0
CONTINUE
IF (N.LT.8) RETURN
MPI - M + 1
DO 30 I - MPI, N, 8

DX(I) E 0.0
DX(I+I) - 0.0
DX(I+2) = 0.0

DX(I+3) - 0.0

DX(I+4) = 0.0

DX(I+5) - 0.0

DX(I+6) - 0.0

DX(I+7) = 0.0

CONTINUE

RETURN

Code for increment not equal to i.

IX - 1

IF (INCX.LT.0) IX = (-N+I) * INCX + 1

DO 50 I - I, N

DX(IX) - 0.0

IX - IX + INCX

CONTINUE
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Copyright (C) 1990, Roland W. Freund and Noel M. Nachtigal
All rights reserved.

No part of this code may be reproduced, stored in a retrieval
system, translated, transcribed, transmitted or distributed in

any form or by any means means, manual, electric, electronic,

electo-magnetic, mechanical, chemical, optical, photocopying,

recording, or otherwise, without the prior explicit written

permission of the author(s) or their designated proxies. In no

event shall the above copyright notice be removed or altered in

any way.

This code is provided "as is", without any warranty of any kind,

either expressed or implied, including but not limited to, any

implied warranty of merchantibility or fitness for any purpose.

In no event will any party who distributed the code be liable for

damages or for any claim(s) by any other party, including but not

limited to, any lost profits, lost monies, lost data or data

rendered inaccurate, losses sustained by third parties, or any

other special, incidental or consequential damages arising out of

the use or inability to use the program, even if the possibility

of such damages has been advised against. The entire risk as to

the quality, the performance, and the fitness of the program for

any particular purpose lies with the party using the code.

ANY USE OF THIS CODE CONSTITUES ACCEPTANCE OF THE TERMS OF THE
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C

C

This file contains the routines for an eigenvalue solver which
uses the Lanczos code. EIGLAL is the basic routine used to obtain

the Hessenberg matrix whose eigenvalues are taken as estimates
the eigenvalues of A.

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

SUBROUTINE EIGLAL (NDIM, NLEN, HDIM,NLIM, M, VW, SC,WK, Q, TOL,ANORM,

$ INFO,H)

Purpose:

This subroutine uses the Lanczos algorithm to set up a Hessenberg

matrix that can be used to compute eigenvalue estimates for A. It

runs the Lanczos algorithm for NLIM steps, storing the columns of

H returned by DLAL in H. The caller initializes the following:
VW(:,Q(1) - the first Lanczos vector V 1

VW(:,M+Q(1)) - the first Lanczos vector W--I

Q - the array of wrapped indices
TOL(I:4) - tolerances for the Lanczos algorithm (optional)

ANORM - estimate for the norm of the matrix (optional)

INFO - the output units, if any

If the user provides non-positive values for the tolerances in

TOL(I:4), the Lanczos routine DLAL will supply its own defaults.

Also, if the user provides a norm estimate of less than 2.0, the
Lanczos routine DLAL will set the norm estimate to 2.0.

Parameters:

NDIM - the dimensioned size of the array VW. Must be at least i;

checked for validity (input).

NLEN - the actual size of the Lanczos vectors V and W; this also

implicitly determines the size of the matrix A. Must be

less than or equal to NDIM; checked for validity (input).
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HDIM = the dimensioned size of H. Must be at least I; checked

for validity (input).

NLIM _ the maximum number of steps the algorithm can take before

H overflows. Must be less than or equal to HDIM; checked

for validity. On exit, it is the size of the usable part

of H, i.e., the eigenvalues of H(I:NLIM, I:NLIM) can be

used as estimates for NLIM of the eigenvalues of A

(input/output).
M - the maximum number of Lanczos vectors that can be stored

in the array VW. It is related to the size of the largest

block that can be built. The algorithm runs out of memory
when the number of vectors in the last block and in the

current block reaches M. For this reason, M must be at

least 3; checked for validity (input).

VW = work array dimensioned (NDIM, 2*M+2) words. It is used to

store the Lanczos vectors V in VW(:,I:M), the vectors W

in VW(:,M+I:2*M), and two temporary vectors used by DLAL

in VW(:,2*M+I) and VW(:,2*M+2). The Lanczos vectors V and

W are stored wrapped, i.e., V N is stored in VW(:,Q(N))

and W N is stored in VW(:,M+Q(N)), where Q(N) is assumed

to be a wrapped index array -- see below (input/output).

SC - work array dimensioned (5,M), used to store the various
scale factors. We have:

SC(l,i) - S(i) / S(i-l)

SC(2,i) - T(i) / T(i-l)

SC(3,i) - S(i) / T(i)

SC(4,i) - CSI(i)

SC(5,i) - SIG(i)

Note that the scale routine DSCALE expects to receive the
scale factors in a 5xl vector as the one described above.

This routine initializes the first column; thereafter,

the DLAL routine will update the array (input/output).

WK - work array dimensioned (M,5*M+I4), used to store internal
variables. We have:

WK (:, 1 :M) - (W_{NK) ^T V_{NK})
WK(:,M+I) to WK(:,2*M)

- (W_{NK}^T V_{NK})^{-I}
WK(:,2*M+I) to WK(:,3*M)

- work array for the SVD routine DSVDC

Q

TOL

WK( :, 3*M+I)

WK (:, 3"M+2)

WK( :, 3"M+3)

WK( :,3"M+4)

WK(:, 3"M+5)

WK(: ,3"M+6)

WK( :, 3"M+7)

WK (:, 3"M+8 )

(input/output).

- temporary vector

- temporary vector

- temporary vector
- the saved last column of the matrix

(W_{NKMI }^T V_{ NKMI })^ {-I }
- H (NK:NKPI,N)

- H (NK:NKPI,N+I)

- the saved part of H(N), used in case
the block is restarted

- the saved part of H(NPI), used in
case the block is restarted

- integer array specifying the indices for all the wrapped

variables (V,W, SC,WK). To allow the algorithm to run more

than M steps, these variable wrap around, in that Q(I) is
the index of the slots where that variables are stored at

the I-th step. Normally, these indices would be in order,

basically Q(I) - I MOD M + i, but the algorithm makes no

assumptions to this effect. These indices are not checked

in any way for validity (input).
- vector with the tolerances used in the various checks. We

have:

TOL(1) - upper bound for the range of CSI and SIGMA

TOL(2) = lower bound for the range of CSI and SIGMA

TOL(3) = level below which the norms of the Lanczos
vectors are considered zero (used to check if

an invariant subspace was found)
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TOL(4) - level below which the singular values of
(W_{NK}^T V {NK)) are considered zero

Note that the scale routine DSCALEexpects to receive the
tolerances in a 4xl vector as the one described above. If

the user provides non-positive values for any of TOL(I:4)

then the DLAL routine will replace them with defaults, as
follows:

TOL(1) - I/TOL(2)

TOL(2) - eps^{i/2)

TOL(3) - eps^{i/4}

TOL(4) - eps^{I/3)

Here, eps is machine epsilon (input/output).

ANORM = user-supplied estimate for the norm of A. If a value less

than 2.0 is provided, it is replaced with 2.0. On exit,

it is set to the last value used by the algorithm, which

updates the norm estimate whenever it is necessary to

close a block (input/output).

INFO - information passing variable.

Upon entry, it gives the numbers of the output units used
to trace execution. There are two such units available,

one where the non-zero elements of the Hessenberg matrix

H are sent, and the other where various trace messages

about the progress of the algorithm are sent. The data in

H is output in groups of numbers, one number per line, as

follows: each group begins with two integers that specify

the starting and ending row indices, followed by the

actual values, reals output in format E25.18. Note that

the ending row index is one higher than the column index,

as H is upper Hessenberg. To extract the unit numbers for

the two units, INFO - xxyy, where xx is the unit number

for the data for H, and yy is the unit number for the

trace messages. For example, INFO - 1106 means that the

data for H will be sent to unit II and the trace messages

will be sent to unit 6. A unit number of 00 denotes that

no output is to be sent to that unit. INFO - 0 disables

both outputs. It is the responsibility of the caller to

ensure that the units are ready for output.

H

Upon exit :
INFO- 0

INFO < 0

--> nothing to report, algorithm converged
--> the SVD routine returned this error code

in DLAL (with positive sign)

INFO - 1 --> an A-invariant subspace has been found

INFO - 2 --> an A^T-invariant subspace has been found

INFO - 3 --> both subspaces have been found
INFO - 4 --> the last block could not be closed

INFO - 8 --> algorithm failed to converge after NLIM

steps
INFO - 16 --> invalid inputs

For more details, see the description in the routine DLAL

(input/output).

- array dimensioned (NLIM, NLIM) used for H (output).

External routines used:

subroutine dcopy(n, dx,incx, dy,incy)

Computes dy - dx.

double precision ddot(n,dx, incx,dy, incy)

Computes the dot product of dx and dy.
subroutine dlal(ndim, nlen,m,n, nk, nkml,vw, sc,wk, q, norms,tol, info)

Does one step of the look-ahead Lanczos algorithm.

subroutine dscal(n, da,dx, incx).

Computes dx - da * dx.
subroutine dscale(n,v,w, sc,tol)

Scales the Lanczos vectors v and w.

subroutine dzero(n,dx,incx)

Zeroes out dx.



C Noel M. Nachtigal
C October 25, 1990
C

C
INTRINSIC MAX

C
EXTERNALDDOT
DOUBLEPRECISIONDDOT

INTEGERHDIM, INFO, M, NLEN, NLIM, NDIM, Q(NLIM)
DOUBLEPRECISIONANORM,H(HDIM,HDIM), SC(5,M), TOL(5)
DOUBLEPRECISIONVW(NDIM,2"M+2), WK(M,3"M+8)

Local variables.

INTEGERI, N, NK, NKMI, ONKMI
INTEGERHF, TF
DOUBLEPRECISIONDTMP, NORMS(2)

Check whether the inputs are valid.

IF ( (NDIM.LT. i) .OR. (NLEN.GT.NDIM).OR. (HDIM.LT.I) .OR. (NLIM.GT. HDIM)
$ .OR. (M.LT.3)) THEN

INFO - 16
RETURN

END IF

Extract the output units HF and TF from INFO.

HF - INFO / 100

TF - INFO - HF * 100

Initialize the counters.

N - 1

NK - 1

NKMI - 0

C

C Scale the first pair of Lanczos vectors.

C

SC(4,Q(1)) - 1.0

SC(5,Q(1)) - 1.0

SC(3,Q(1)) - 1.0

CALL DSCALE (NLEN,VW(I,Q(1)),VW(I,M+Q(1)),SC(I,Q(1)),TOL)

C

C Check for convergence (already?).

C

INFO- 0

IF (SC(4,Q(1)).EQ.-I.0) INFO - INFO + 1

IF (SC(5,Q(1)).EQ.-I.0) INFO - INFO + 2

IF (INFO.NE.0) RETURN

C

C Set up WK(I,I).

C
WK(I,I) - DDOT(NLEN, VW(I,Q(1)),I,VW(I,M+Q(i)),I)

WK(I,I) - SC(5,Q(1)) * SC(4,Q(1)) * WK(I,1)

C
C Initialize the norm estimate. It has to be at least 2.0.

C
DTMP = 2.0

NORMS(2) - 0.0

NORMS (1 ) - MAX (ANORM, DTMP )

Iterate •

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
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ONKMI - MAX(I,NKMI)

If we have closed a block, save the working variables, in case we
need to restart. Also, reset the norm estimator.

IF (N.EQ.NK) THEN

CALL DCOPY (N-NKMI+I,WK(I,3*M+6),I,WK(I,3*M+8),I)

CALL DCOPY (N-ONKMI+I,WK(I,3*M+5),I,WK(I,3*M+7),I)
NORMS(2) - 0.0

END IF

Check whether we have enough room left in the arrays.

INFO - 0

IF (N-NKMI+2.GE.M) INFO - 1

IF ((INFO.NE.0).AND.(TF.NE.0)) THEN

WRITE (TF,'(A39)') 'Block is maximal, recommending closure.'
END IF

Set ANORM to the current value of the norm estimate.

ANORM - NORMS (1 )

Do one step of the Lanczos algorithm.

CALL DLAL (NDIM, NLEN, M,N, NK, NKMI,VW, SC,WK,Q,NORMS,TOL,TF, INFO)

Check the info passing variable.

We check whether the DSVDC routine reported errors or whether the

block did not close when it was maximal, both of which result in

an immediate return, and whether an invariant subspace was found,
which Just stops the iteration.

IF (INFO.LT.0) THEN
NLIM - N

RETURN

ELSE IF (INFO.EQ.I) THEN
NLIM - N

ELSE IF (INFO.EQ.2) THEN

NLIM - N

ELSE IF (INFO.EQ.I + 2) THEN
NLIM - N

ELSE IF (INFO.EQ.4) THEN
N - NK

IF (TF.NE.0) WRITE (TF,' (A20)') 'Block did not close:'

Block did not close, do we have another norm estimate?

$

IF (NORMS(2).EQ.0.0) THEN

IF (TF.NE.0) WRITE (TF,' (A47)')

'--> no new norm estimates available (aborting).'
NLIM - N

RETURN

ELSE

Update the norm --- the block is guaranteed to close now. We then
restart the block.

NORMS(2) - 2.0 * NORMS(2)

IF (TF.NE.0) WRITE (TF,' (A30, E25.18)')

'--> updating norm estimate to ', NORMS(2)

CALL DCOPY (N-NKMI+I,WK(I,3*M+8),I,WK(I,3*M+6),I)

CALL DCOPY (N-ONKMI+I,WK(I,3*M+7),I,WK(I,3*M+5),I)

NORMS(1) - NORMS(2)

NORMS(2) _ 0.0

GO TO 20
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ENDIF
END IF

Output H to the trace file.

IF (HF.NE.0) THEN
WRITE (ii,' (I20)') ONKMI
WRITE (ii,' (I20)') N
WRITE (II, (E25.18)) (WK(I-ONKMI+I,3*M+5),I-ONKMI,N)

END IF

Initialize the "next" column of H. First, zero it all out, then,

copy the part we have so far.

CALL DZERO (NLIM, H(I,N-I),I)

CALL DCOPY (N-ONKMI+I,WK(I,3*M+5),I,H(ONKMI,N-1),I)

Set up the work vector for the next step.

CALL DCOPY (N-NKMI+I,WK(I,3*M+6),I,WK(I,3*M+5),I)

Iterate up to NLIM steps.

IF (N.LT.NLIM) GO TO 10

Adjust the dimension NLIM, which right now is one bigger than the

size of the biggest usable submatrix of H.

NLIM - NLIM - 1

RETURN

END
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Copyright (C) 1990, Roland W. Freund and Noel M. Nachtigal
All rights reserved.
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ANY USE OF THIS CODE CONSTITUES ACCEPTANCE OF THE TERMS OF THE

ABOVE STATEMENTS

C

C

C

C

C

C

This file contains the routines for the QMR algorithm. SYSLAL is

the basic routine used to solve linear systems with QMR. BCKSUB

is a triangular matrix solver geared towards the setup used by

the Lanczos code (in particular, vector wrapping).

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

SUBROUTINE SYSLAL (NDIM,NLEN, NLIM,M, VW, SC,WK, Q, TOL, ANORM, INFO)

Purpose:

This subroutine uses the Lanczos algorithm, combined with the QMR

algorithm, to solve linear systems. It runs the QMR algorithm to

convergence or until a user-specified iteration limit is reached.

The caller initializes the following:

VW(:,Q(1) - the first Lanczos vector V_l, the residual for

the initial guess

VW(:,M+Q(1)) - the first Lanczos vector W 1

Q - the array of wrapped indices

TOL(I:4) - tolerances for the Lanczos algorithm (optional)

TOL(5) - convergence tolerance for the residual norm
ANORM - estimate for the norm of the matrix (optional)

INFO _ the output units, if any

If the user provides non-positive values for the tolerances in
TOL(I:4), the Lanczos routine DLAL will supply its own defaults.

Also, if the user provides a norm estimate of less than 2.0, the
Lanczos routine DLAL will set the norm estimate to 2.0.

Parameters:

NDIM - the dimensioned size of the array VW. Must be at least I;

checked for validity (input).
NLEN - the actual size of the Lanczos vectors V and W; this also

implicitly determines the size of the matrix A. Must be
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NLIM

M

VW

SC

WK

less than or equal to NDIM; checked for validity (input).
- the maximum number of iterations the algorithm can take.

Must be at least l; checked for validity. On exit, it is

the index of the last step taken or attempted, depending

on INFO, see below (input/output).
- the maximum number of Lanczos vectors that can be stored

in the array VW. It is related to the size of the largest

block that can be built. The algorithm runs out of memory

when the number of vectors in the last block and in the

current block reaches M. For this reason, M must be at

least 3; checked for validity (input).

- work array dimensioned (NDIM, 3*M+4) words. It is used to
store the Lanczos vectors V in VW(:,I:M), the vectors W

in VW(:,M+I:2*M), two temporary vectors used by DLAL in

VW(:,2*M+I) and VW(:,2*M+2), the right hand side vector B

in VW(:,2*M+3), the current solution X N in WV(:,2*M+4),

and the update direction vectors PR in VW(:,2*M+5:3*M+4).

The Lanczos vectors V and W and the direction vectors PR

are stored wrapped, i.e., V N is stored in VW(:,Q(N)) and
W N is stored in VW(:,M+Q(N)), where Q(N) is assumed to

be a wrapped index array -- see below (input/output).

- work array dimensioned (5,M), used to store the various
scale factors. We have:

SC(I,i) - S(i) / S(i-l)

SC(2,i) - T(i) / T(i-l)

SC(3,i) - S(i) / T(i)

SC(4,i) - CSI(i)

SC(5,i) - SIG(i)

Note that the scale routine DSCALE expects to receive the
scale factors in a 5xl vector as the one described above.

This routine initializes the first column; thereafter,

the DLAL routine will update the array (input/output).

- work array dimensioned (M, 5*M+I4), used to store internal
variables. We have:

WK(:,I:M) - (W_{NK}^T V_{NK})
WK(:,M+I) to WK(:,2*M)

- (W_{NK} ^T V_{NK}) ^ {-i ]

WK(:,2*M+I) to WK(:,3*M)

- work array for the SVD routine DSVDC

WK(:,3*M+I) - temporary vector

WK(:,3*M+2) - temporary vector

WK(:,3*M+3) - temporary vector

WK(:,3*M+4) - the saved last column of the matrix

(W_{NKMI}^T V {NKMI})^{-I}

WK (:, 3"M+5) - H (NK:NKPI, N)

WK (:, 3"M+6) - H (NK:NKPI, N+I)

WK(:,3*M+7) - the saved part of H(N), used in case
the block is restarted

WK(:,3*M+8) - the saved part of H(NPI), used in

case the block is restarted

WK(:,3*M+9) - the scale factors OMEGA (wrapped)

WK(:,3*M+I0) - the cosines of the Givens rotations

(wrapped)

WK(:,3*M+II) - the sines of the Givens rotations

(wrapped)

WK(:,3*M+I2) - the rotated right hand side for the

least squares problem (wrapped)

WK(:,3*M+i3) = the elements of the row vectors ZNK

(wrapped)

WK(:,3*M+I4) - the last column of R_{NKM2}^{-I}

(wrapped)

WK(:,3*M+I5) to WK(:,4*M+I4)
= the matrix Y NK (wrapped)

WK(:,4*M+IS) to WK(:,5*M+I4)
- the matrix R NK (wrapped)

(input/output).
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Q - integer array specifying the indices for all the wrapped
variables (V,W,SC,WK). To allow the algorithm to run more
than M steps, these variable wrap around, in that Q(1) is
the index of the slots where that variables are stored at
the I-th step. Normally, these indices would be in order,
basically Q(1) - I MODM + i, but the algorithm makes no
assumptions to this effect. These indices are not checked
in any way for validity (input).

TOL - vector with the tolerances used in the various checks. We
have:

TOL(1) - upper bound for the range of CSI and SIGMA
TOL(2) - lower bound for the range of CSI and SIGMA
TOL(3) = level below which the norms of the Lanczos

vectors are considered zero (used to check if
an invariant subspace was found)

TOL(4) - level below which the singular values of
(W_{NK}^T V_{NK}) are considered zero

TOL(5) = the convergence level for the scaled residual
norm

Note that the scale routine DSCALEexpects to receive the
tolerances in a 4xl vector as the one described above. If

the user provides non-positive values for any of TOL(I:4)

then the DLAL routine will replace them with defaults, as
follows:

TOL(1) z I/TOL(2)

TOL(2) - eps^{i/2}

TOL(3) = eps^{i/4}

TOL(4) - eps^{I/3}

Here, eps is machine epsilon (input/output).
ANORM - user-supplied estimate for the norm of A. If a value less

than 2.0 is provided, it is replaced with 2.0. On exit,

it is set to the last value used by the algorithm, which

updates the norm estimate whenever it is necessary to

close a block (input/output).

INFO - information passing variable.

Upon entry, it gives the numbers of the output units used

to trace execution, and controls the generation of the

convergence history. Up to three trace output units can

be spcified: one where the non-zero elements of the upper

Hessenberg matrix H are sent, another where various trace

messages with details about the progress of the algorithm

are sent, and finally a third one, where data about the

convergence history is sent. The data in H is output in

groups of numbers, one number per line, as follows: each

group begins with two integers that specify the starting

and ending row indices, followed by the actual values,

reals output in format E25.17. Note that the ending row

index is one higher than the column index, as H is upper

Hessenberg. Also note that since H is output before the

block is checked for forced closure, data for any columns
in H may appear several times; of course, only the latest

is valid. The convergence history data is output as up

to three numbers on a line, the first one an integer, the

size of the current block, the other two reals, output in

format E25.17, the first one if which is the upper bound

used in the convergence tests, and the second one is the

computed residual norm, when actually computed, or -i.0

otherwise. To extract the unit numbers for these units,

INFO - txxyyzz, where xx is the unit number for the data

for H, and yy is the unit number for the convergence data

and zz of the unit number for the trace messages. Also,

if t.NE.0, then the actual residual norm is computed at

every step. For example:

INFO - 1106 -=> trace messages are sent to unit 6,

convergence data sent to unit Ii

INFO = 1000000 ==> the true residual norm is always
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computed
INFO - 5121314 --> always compute true residual norm,

send trace messages to unit 14, the

convergence data to unit 13, and H
to unit 12

INFO - 0 --> no output.

Note that INFO must be a 32-bit integer, and that it is

the responsibility of the caller to ensure that the units

used are ready for output.

Upon exit:
INFO - 0

INFO < 0

--> nothing to report, algorithm converged

--> the SVD routine returned this error code

in DLAL (with positive sign)

INFO - i --> an A-invariant subspace has been found

INFO - 2 --> an A^T-invariant subspace has been found

INFO - 3 --> both subspaces have been found
INFO - 4 --> the last block could not be closed

INFO - 8 --> algorithm failed to converge after NLIM

steps

INFO - 16 --> invalid inputs

For more details, see the description in the routine DLAL

(input/output).

External routines used:

subroutine axb(x,b)

Computes b - A * x.
subroutine bcksub(ndim, nlen,nstart,a, xb,q)

Computes xb - inv(a) * xb with a upper triangular (specific to

our setup, i.e., the columns of a are permuted according to q).

subroutine daxpy(n, da,dx, incx,dy, incy)

Computes dy - da * dx + dy.

subroutine dcopy(n, dx, incx, dy,incy)

Computes dy - dx.

double precision ddot(n,dx, incx,dy, incy)

Computes the dot product of dx and dy.

subroutine dlal(ndim, nlen,m,n,nk,nkml,vw, sc,wk, q, norms,tol, info)

Does one step of the look-ahead Lanczos algorithm.

double precision dnrm2(n, dx, incx)

Computes the 2-norm of dx.

subroutine drot(n,dx, incx,dy, incy,dcos, dsin)

Applies a Givens rotation to a vector.

subroutine drotg(da,db, dcos,dsin)

Computes a Givens rotation.

subroutine dscal(n,da, dx, incx).

Computes dx - da * dx.

subroutine dscale(n,v,w, sc,tol)

Scales the Lanczos vectors v and w.

subroutine dzero(n, dx, incx)

Zeroes out dx.

double precision getomg(n)

Computes the scaling factor OMEGA_n.

Noel M. Nachtigal

October 24, 1990

C

INTRINSIC FLOAT, MAX, SQRT

C

C

EXTERNAL DDOT, DNRM2, GETOMG

DOUBLE PRECISION DDOT, DNRM2, GETOMG

INTEGER INFO, M, NLEN, NLIM, NDIM, Q(NLIM)

DOUBLE PRECISION ANORM, SC(5,M), TOL(5)

DOUBLE PRECISION VW(NDIM, 3*M+4), WK(M,5*M+I4)
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Local variables.

INTEGER I, J, LNK, LNKMI, LNKM2, N, NK, NKMI, ONK, ONKMI, ONKM2

INTEGER HBASE, HF, TF, TRES, VF

DOUBLE PRECISION DTMP1, DTMP2, MAXOMG, NORMS(2), R0, SAVRHS

Check whether the inputs are valid.

IF ((NDIM.LT.I).OR. (NLEN.GT.NDIM).OR. (NLIM.LT.I).OR. (M.LT.3)) THEN
INFO - 16

RETURN

END IF

Extract the output units HF, TF, and VF from INTO,

residual flag TRES.

TRES - INFO / I000000

INFO - INFO - TRES * I000000

HF - INFO / i0000

INFO - INFO - HF * 10000

TF - INFO / I00

INFO - INFO - TF * 100
VF = INFO

and the true

Initialize the counters.

N - 1

NK - 1

NKMI - 0

Scale the first pair of Lanczos vectors.

SC(4,Q(1)) - 1.0

SC(5,Q(1)) - 1.0

SC(3,Q(1)) - 1.0

CALL DSCALE (NLEN,VW(I,Q(1)),VW(I,M+Q(1)),SC(I,Q(1)),TOL)

Check for convergence (already?).

INFO - 0

IF (SC(4,Q(1)).EQ.-I.0) INFO - INFO + 1

IF (SC(5,Q(1)).EQ.-1.0) INFO - INFO + 2

IF (INFO.NE. 0) RETURN

Set up WK(I,I).

WK(I,I) - DDOT(NLEN,VW(I,Q(1)),I,VW(I,M+Q(1)),I)

WK(I,I) - SC(5,Q(1)) * SC(4,Q(1)) * WK(I,I)

Set up the first element of the right-hand side.

WK(Q(1),3*M+9) - GETOMG(1)

WK(Q(1),3*M+I2) - WK(Q(1),3*M+9) * SC(I,Q(1))

MAXOMG - 1.0 / WK(Q(1),3*M+9)

Initialize the norm estimate. It has to be at 1east 2.0.

DTMPI - 2.0

NORMS (2) - 0.0

NORMS (I) - MAX (ANORM, DTMPI)

Compute and save the initial residual norm in R0.

R0 - DNRM2 (NLEN,VW(I,Q(1)), I)

C

C Iterate.
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ONK - NK

ONKMI - MAX (I,NKMI)

If we have closed a block, save the working variables, in case we

need to restart. Also, reset the norm estimator.

IF (N.EQ.NK) THEN

CALL DCOPY (N-NKMI+I,WK(I,3*M+6),I,WK(I,3*M+8),I)

CALL DCOPY (N-ONKMI+I,WK(I,3*M+5),I,WK(I,3*M+7),I)

SAVRHS - WK(Q(N) ,3"M+12)

NORMS(2) - 0.0

END IF

Check whether we have enough room left in the arrays.

INFO - 0

IF (N-NKMI+2.GE.M) INFO - 1

IF ((INFO.NE.0).AND.(VF.NE.0)) THEN

WRITE (VF,' (A39)') 'Block is maximal, recommending closure.'
END IF

Set ANORM to the current value of the norm estimate.

ANORM - NORMS (I)

Do one step of the Lanczos algorithm.

CALL DLAL (NDIM, NLEN, M,N, NK, NKMI,VW, SC, WK, Q,NORMS,TOL,VF, INFO)

Check the info passing variable.

We check whether the DSVDC routine reported errors, whether the
block did not close when it was maximal, or whether an invariant

subspace was found.

IF (INFO.LT.0) THEN
NLIM _ N

RETURN

ELSE IF (INFO.EQ.I) THEN

NLIM - N

RETURN

ELSE IF (INFO.EQ.2) THEN
NLIM - N

RETURN

ELSE IF (INFO.EQ.I + 2) THEN

NLIM - N

RETURN

ELSE IF (INFO.EQ.4) THEN
N - NK

IF (VF.NE.0) WRITE (VF,' (A20)') 'Block did not close:'

Block did not close, do we have another norm estimate?

IF (NORMS(2).EQ.0.0) THEN

IF (VF.NE.0) WRITE (VF,'(A47)')

'--> no new norm estimates available (aborting).'

NLIM - N

RETURN

ELSE

Update the norm --- the block is guaranteed to close now. We then
restart the block.

NORMS(2) = 2.0 * NORMS(2)

IF (VF.NE.0) WRITE (VF,' (A30, E25.17)')

'==> updating norm estimate to ', NORMS(2)
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CALL DCOPY(N-NKMI+I,WK(I,3*M+8),I,WK(I,3*M+6),I)
CALL DCOPY(N-ONKMI+I,WK(I,3*M+7),I,WK(I,3*M+5),I)
NORMS(1) - NORMS(2)
WK(Q(N) , 3"M+12) - SAVRHS
NORMS(2) - 0.0
GOTO 20

END IF
ELSE

INFO - 8
ENDIF

Output H to the trace file.

IF (HF.NE.0) THEN
WRITE (II,' (I20)') ONKMI
WRITE (Ii,'(I20)') N
WRITE (II,' (E25.17)') (WK(I-ONKMI+I,3*M+5),I=ONKMI,N)

END IF

Get the next scaling factor OMEGA(NPI)and update MAXOMG.

WK(Q(N), 3"M+9) - GETOMG(N) °
MAXOMG - MAX(MAXOMG,1.0/WK(Q (N) ,3"M+9) )

Compute the starting index in H(:,N-I).

HBASE- MAX(I,ONKMI-I)

Multiply the column of H by the OMEGAsand apply all the previous
rotations.

WK(I,3*M+5) - WK(Q(HBASE),3*M+9) * WK(I,3*M+5)

If we are beyond the first block, then there is fill-in above the
top element in this column of H. This element is saved in ZNK.

IF (ONKMI.GT.I) THEN
DTMPI - 0.0

CALL DROT (I,DTMPI,I,WK(I,3*M+5),I,

$ WK(Q (ONKMI), 3*M+I0) ,WK(Q (ONKMI), 3*M+ll) )

WK (Q (N-l), 3"M+13) - DTMPI
END IF

Apply the rotations to the rest of the column.

DO 30 I - ONKMI+I, N-I
J- I - ONKMI

WK(J,3*M+5) -- WK(Q(I),3*M+9) * WK(J, 3*M+5)

CALL DROT (I,WK(J, 3*M+5),I,WK(J+I,3*M+5),I,

$ WK (Q (I), 3*M+I0) ,WK (Q (I), 3*M+II) )
CONT INUE

H(N) is not reached by the any of the rotations. Multiply it by

its OMEGA and compute the rotation for the column. This will also

apply it.

J - N - ONKMI

WK(J, 3*M+5) - WK(Q(N),3*M+9) * WK(J, 3*M+5)

CALL DROTG (WK(J, 3*M+5),WK(J+I,3*M+5),

$ WK (Q (N), 3*M+I0), WK (Q (N), 3*M+II) )

Apply it to the right-hand side as well.

WK(Q(N),3*M+I2) - 0.0

CALL DROT (I,WK(Q(N-I),3*M+I2),I,WK(Q(N),3*M+I2),I,

$ WK (Q (N), 3*M+I0), WK (Q (N), 3*M+II) )
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Extract the next column of Y_{NK}.

IF (ONK.GT.ONKMI) THEN
CALL DCOPY (ONK-ONKMI,WK(I,3*M+5),I,WK(I,3*M+I4+Q(N-I)),I)

END IF

Extract the next column of R_{NK}.

CALL DCOPY (N-ONK, WK(ONK-ONKMI+I,3*M+5),I,WK(I,4*M+I4+Q(N-I)),I)

Set up the work vector for the next step.

CALL DCOPY (N-NKMI+I,WK (I, 3"M+6), I,WK (I, 3"M+5), I)

If we have closed a block, update the solution.

IF (NK.NE.ONK) THEN

Compute the lengths of the blocks.

LNK - N - ONK

LNKMI = ONK - ONKMI

LNKM2 - ONKMI - ONKM2

Zero out P_{NK) R_{NK}.

DO 40 I m ONK, N-I

CALL DZERO (NLEN, VW (I, 2*M+4+Q (I)), I)

CONT IN[rE

IF (ONKMI.GT.I) THEN

Compute the term involving P_{NKM2}.

IF (LNKM2.EQ.I) THEN

LNKM2 - 1 --> R_{NKM2}^{-I} is a lxl matrix, so we first multiply

ZNK by this scalar, then ( P_{NKM2} R_{NKM2} ) by the result.

DTMPI - WK(Q(ONKMI-I), 3"M+14)

DO 50 I - ONK, N-I

DTMP2 - DTMPI * WK(Q(I),3*M+I3)

CALL DCOPY (NLEN, VW (1,2*M+4+Q (ONKMI-I)), I,

VW(I, 2*M+4+Q (I)), i)

CALL DSCAL (NLEN,-DTMP2,VW(I, 2*M+4+Q (I)), i)

CONTINUE

ELSE IF (LNK.EQ.I) THEN

LNK - 1 --> ZNK is a lxl vector, so we first multiply the last

column of R_{NKM2}^{-I} by ZNK first, then ( P_{NKM2} R_{NKM2} )

by the result.

$

DTMPI - WK (Q (ONK), 3"M+13)

DO 60 I - ONKM2,0NKMI-I

DTMP2 - DTMPI * WK(Q(I),3*M+I4)

CALL DAXPY (NLEN, -DTMP2,VW(I, 2*M+4+Q (1)), i,

VW (I, 2*M+4+Q (ONK)), I)

CONTINUE

ELSE

Otherwise, we first multiply ( P_{NKM2} R_{NKM2} ) by

column of R {NKM2}^{-I}, accumulating the result in

column of ( P_{NK} R_{NK} ), which was zeroed out.

the last

the first
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DO 70 I - ONKM2,ONKMI-I
CALL DAXPY(NLEN,WK(Q(1),3*M+I4),VW(I,2*M+4+Q(I)),I,

VW(i, 2*M+4+Q(ONK)), i)
CONTINUE

Then multiply by the ZNK vector, which involves just scaling the
above column by the appropriate factor and storing it in its slot
in the array.

$

DO 80 I _ ONK+I, N-I

CALL DCOPY (NLEN, VW(I,2*M+4+Q (ON-K)), I,

VW (I, 2*M+4+Q (I)), I)

CALL DSCAL (NLEN,-WK(Q(I),3*M+I3),VW(I,2*M+4+Q(I)),I)
CONTINUE

CALL DSCAL (NLEN, -WK(Q (ONK), 3"M+13),

VW(I, 2*M+4+Q (ONK)), I)
END IF

END IF

IF (ONK.GT.ONKMI) THEN

Compute the term involving P_{NKMI}.

DO I00 I - ONK, N-I

Compute the next column of R_{NKMI}^{-I} * Y_{NK}.

CALL BCKSUB (M,LNKMI,ONKMI,WK(I, 4"M+15),

$ WK (i, 3*M+I4+Q (I)) ,Q)

Multiply ( P_{NKMI} R_{NKMI} ) by the new column and
appropriate column of ( P

add to the

_{NK} R_{NK} ).

DO 90 J- I, LNKMI

CALL DAXPY (NLEN, -WK(J, 3*M+I4+Q (I)),

VW(I, 2*M+4+Q (ONKMI+J-I)), i, VW (i, 2*M+4+Q (I)), i)
CONTINUE

CONTINUE

Compute the last column of R{NKMI} and store it for when it will

become the last column of R_{NKM2}.

CALL DZERO (M,WK(I,3*M+I4+Q(ONK)),I)
WK(LNKMI, 3*M+I4+Q (ONK)) - 1.0

CALL BCKSUB (M, LNKMI, ONKMI, WK (i, 4"M+15) ,

WK (1,3*M+I4+Q (ONK)), Q)

DO ii0 I - ONKMI, ONK-I

WK (Q (I), 3"M+14) - WK (I-ONKMI+I, 3*M+I4+Q (ONK))
CONTINUE

END IF

Now add V_{NK} into ( P_{NK} R_{NK} ). We also use this loop to

copy the right hand side of the least squares problem to a work
vector.

DO 120 I - ONK, N-I

CALL DAXPY (NLEN, SC(5,Q(I)),VW(I,Q(I)),I,

VW (I, 2*M+4+Q (I)) ,I)

WK(I-ONK+I, 3*M+I4+Q (ONK)) = WK(Q(I), 3"M+12)
CONTINUE

Compute R_{NK}^{-I} * RHS.

CALL BCKSUB (M, LNK,ONK, WK(I,4*M+I5),WK(I,3*M+I4+Q(ONK)),Q)
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Update the solution vector.

DO 130 I - ONK, N-I

CALL DAXPY (NLEN, WK (I-ONK+I, 3*M+I 4+Q (ONK)),
VW (i, 2*M+4+Q (I)) ,I, VW (i, 2"M+4) ,i)

CONTINUE

Compute the residual norm upper bound.

DTMPI - SQRT(FLOAT(N)) * MAXOMG * ABS(WK(Q(N),3*M+I2)) / R0

IF (VF.NE.0) WRITE (VF,' (A30,E25.17)') 'Upper bound:', DTMPI

If the upper bound is within one order of magnitude of the target

convergence norm, compute the actual scaled residual norm.

IF ((TRES.NE.0) .OR. (DTMPI/TOL(5) .LE.10.0)) THEN

DTMP2 = DTMPI

CALL AXB (VW(I,2*M+4),VW(i,2*M+I))
DTMPI - 1.0

CALL DSCAL (NLEN, -DTMPI,VW(I, 2*M+I), I)

CALL DAXPY (NLEN, DTMPI,VW(I,2*M+3),I,VW(I,2*M+I),I)

DTMPI - DNRM2 (NLEN, VW(I,2*M+I), i) / R0

IF (VF.NE.0) WRITE (VF,'(A30,E25.17)') 'Actual norm:', DTMPI

IF (TF.NE.0) WRITE (TF,' (II0,2E25.17)') N-ONK, DTMP2, DTMPI

ELSE

IF (TF.NE.0) WRITE (TF,' (II0,2E25.17)') N-ONK, DTMPI, -I.0

END IF

Check for convergence.

IF (DTMPI.LE.TOL(5)) THEN

INFO - 0

NLIM - N

END IF

Update ONKM2.

ONKM2 - ONKMI

END IF

Iterate up to NLIM steps.

IF (N.LT.NLIM) GO TO i0
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SUBROUTINE BCKSUB (NDIM,NLEN, NSTART,A, XB, Q)

Purpose:

Computes XB - inv(A) * XB, where A is upper triangular.

Parameters:
NDIM - the dimensioned size of A (input).

NLEN - the actual size of A (input).

NSTART - the starting column index for A (input).

A - array containing the matrix of interest starting in the
column NSTART and possibly wrapping around as indicated

by Q (input).

XB = upon entry, the right hand side vector; upon exit, the
solution. XB is not wrapped (input/output).

Q = integer array specifying the actual indices for wrapping
purposes. Q(i) is the true index in A of the ith column
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of the matrix of interest (input).

Noel M. Nachtigal

October 8, 1990

INTEGER NDIM, NLEN, NSTART, Q(*)

DOUBLE PRECISION A(NDIM,*), XB(*)

Local variables.

INTEGER I, ILAST, ITMP, J

DOUBLE PRECISION DTMP

Do the elimination; the only trick here is to keep track of the

wrapped columns of A, i.e., A(:,J) is stored in A(:,Q(J)).

ILAST - NSTART + NLEN - 1

XB (NLEN) - XB (NLEN) / A(NLEN, Q(ILAST) )

DO 20 i - ILAST-I, NSTART, -I
DTMP - 0.0

ITMP - I - NSTART + 1

DO I0 J - I+l, ILAST

DTMP - DTMP + XB(J-NSTART+I) * A(ITMP,Q(J))

CONTINUE

XB(ITMP) - (XB(ITMP) - DTMP) / A(ITMP,Q(I))

CONTINUE

RETURN

END

C
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Copyright (C) 1990, Roland W. Freund and Noel M. Nachtigal

All rights reserved.

No part of this code may be reproduced, stored in a retrieval

system, translated, transcribed, transmitted or distributed in

any form or by any means means, manual, electric, electronic,
electo-magnetic, mechanical, chemical, optical, photocopying,

recording, or otherwise, without the prior explicit written

permission of the author(s) or their designated proxies. In no

event shall the above copyright notice be removed or altered in

any way.

This code is provided "as is", without any warranty of any kind,

either expressed or implied, including but not limited to, any

implied warranty of merchantibility or fitness for any purpose.

In no event will any party who distributed the code be liable for

damages or for any claim(s) by any other party, including but not

limited to, any lost profits, lost monies, lost data or data

rendered inaccurate, losses sustained by third parties, or any

other special, incidental or consequential damages arising out of

the use or inability to use the program, even if the possibility

of such damages has been advised against. The entire risk as to

the quality, the performance, and the fitness of the program for

any particular purpose lies with the party using the code.

*****************************************************************

ANY USE OF THIS CODE CONSTITUES ACCEPTANCE OF THE TERMS OF THE

ABOVE STATEMENTS

C

C

C

C

C

C

C

C

C

C

This file contains the coefficient functions used by the Lanczos

algorithm in the recursion formulas for the inner vectors. The
basic recursions are of the form:

V_{N+I} - A * V_N - ZETA_N * V_N - ETA_N * V_{N-1}

W_{N+I} - A^T * W_N - ZETA_N * W_N - ETA_N * W_{N-I}

The functions in this file compute the coefficients ZETA_N and

ETA N for the various indices N.
D

C

***********************************************************************

C

DOUBLE PRECISION FUNCTION DETA(1)

C

C

C

C

C

C

C

C

C

C

C

C

C

Purpose:
Returns the second scalar in the recursion used for inner vectors

\theta_{i+l} - ( z - dzeta(i) ) \theta_i - deta(i) \theta_{i-l}.

Parameters:

I - the degree of the current polynomial, see above (input).

Noel M. Nachtigal

August 28, 1990

INTEGER I

DETA w 1.0

RETURN

END

C



C

C
C
C
C
C
C
C
C
C
C

DOUBLEPRECISIONFUNCTIONDZETA(I)

Purpose:

Returns the first scalar in the recursion used for inner vectors,

\theta_{i+l} - ( z - dzeta(i) ) \theta_i - deta(i) \theta_{i-l}.

Parameters:

I - the degree of the current polynomial, as above (input).

Noel M. Nachtigal

August 28, 1990

C

C

C

INTEGER I

DZETA - 1.0

RETURN

END



C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Copyright (C) 1990, Roland W. Freund and Noel M. Nachtigal

All rights reserved.

No part of this code may be reproduced, stored in a retrieval

system, translated, transcribed, transmitted or distributed in

any form or by any means means, manual, electric, electronic,

electo-magnetic, mechanical, chemical, optical, photocopying,

recording, or otherwise, without the prior explicit written

permission of the author(s) or their designated proxies. In no

event shall the above copyright notice be removed or altered in

any way.

This code is provided "as is", without any warranty of any kind,

either expressed or implied, including but not limited to, any

implied warranty of merchantibility or fitness for any purpose.

In no event will any party who distributed the code be liable for

damages or for any claim(s) by any other party, including but not

limited to, any lost profits, lost monies, lost data or data

rendered inaccurate, losses sustained by third parties, or any

other special, incidental or consequential damages arising out of

the use or inability to use the program, even if the possibility

of such damages has been advised against. The entire risk as to

the quality, the performance, and the fitness of the program for

any particular purpose lies with the party using the code.

ANY USE OF THIS CODE CONSTITUES ACCEPTANCE OF THE TERMS OF THE

ABOVE STATEMENTS

C

C This file contains the scaling function GETOMG, which computes

C the scaling factors Omega used in scaling the Hessenberg matrix

C from the least squares problem solved by QMR.
C

***********************************************************************

C

DOUBLE PRECISION FUNCTION GETOMG (I)

C

C

C

C

C

C

C

C

C

C

C

C

Purpose:

Returns the scaling parameter OMEGA(i).

Parameters:

I - the index of the parameter OMEGA (input).

Noel M. Nachtigal

October 7, 1990

INTEGER I

GETOMG - 1.0


